配向評価総合パッケージCTRソフトウエア

XRDによる結晶方位解析は、正確な測定、正確な補正が重要です。 この目的を目指して日々進化しているODFPoleFigure2ソフトウエアを中心に 各種有益なソフトウエア群をサポートしています。

更に測定解析システムに基準レベルの考えを取り入れた評価が行えるソフトウエアの提供を行います。

配向評価総合パッケージCTRソフトウエア 20181218

CTRソフトウエアは、材料の配向評価が行える各種ソフトウエアの集合体で、過去各種材料評価を 行う上で必要と考えられる技術が蓄積しています。

中心となるソフトウエアは、正極点処理を行う ODFPoleFigure2 で入力データ (ASC) から処理結果 (TXT2) を作成、TXT2 から PFtoODF3 により ODF 向けデータを作成します。

主な周辺技術としては、

複数の材料の配向状態をプロファイルのまま比較する Cluster

試料 ND 方向に分布する、結晶方位の分布を評価する ProfiletoDivisionProfile, InverseAll

ODF 解析後の逆極点図や、試料ND方向の分布を 2D,3D 逆極点図表示 InverseDsiplay

六方晶の ODF 解析後の逆極点ファイルから逆極点図を表示する InverseDisplayHexa

Random 試料の極点測定データから defocus 曲線を作成する DefocusMakeTABLE

defocus 曲線と Schulz 法の反射極点理論値の整合性チェックする TenckhoffCalc

格子定数や指数を TABLE 化し、波長別の2 θ 計算や、複合材のプロファイルの重なり具合をチェック する。TABLE 化は MakeMyICDD,波長別2 θ 計算は MaterialData、重なり具合は CreateProfile

各種(StandardODF,TexTools,LaboTex,popLA,Bunge)で解析した結晶方位図(ODF)のExportdata から最大 40 レベルの等高線を表示する ODFDisplay、BCC,FCC のファイバー表示、結晶方位計算 各種ODF解析結果から、{hkl}<uvw>を決定する汎用 ODF 表示ソフトウエア GPODFDisplay 結晶方位密度分布計算

材料別のファイバー曲線を最大6ファイル多重記録する FiberMultiDisplay

各種補正を行った極点図の平均化を行う AddingPole

各種(StandardODF,TexTools,LaboTex,popLA,Bunge)で解析した結晶方位図(ODF)や random デ ータから、β方向の平均値をα方向にプロットし、多項式近似を行い、極点図 ASC ファイルを作成す る、PoleFigureAsctoSMAsc(2013/06/11 追加)

透過、反射極点図が1ファイルに含まれる極点図データから透過極点図と反射極点図に分離したファイルを作成する、PFTRSEparate(2013/05/29 追加)

複数の極点図を使って、極点図のピーク位置を計算し、ピーク位置から結晶方位{hkl}<uvw>を 計算する PoleHKLUVWSearch(2013/07/18 追加)

ODF,TexTools と LaboTex では再計算逆極点図が異なるケースがある。この問題を探求するための Tool として作成した **ODFInverseChecker(2013/06/18** 追加)

MaterialData などで使っている内部データベースでは、データベースフォーマットが間違っている データが登録されると、全てのデータベースの機能に障害が発生する。この障害を解消する為の Tool として、DataBaseGurad(2013/06/22 追加)

ODF 解析再計算極点図の Export から、ODF 入力極点図と再計算極点図を比較し ODF 解析の妥当性を 評価(Rp%)する ValueODF

ODF 解析再計算極点図の Export から、**ODF** 入力極点図と再計算極点図を比較し **ODF** 解析の妥当性を 評価する ValueODF の改良版で、LaboTex の VolumeFraction 結果の Error 評価 ValueODFVF

LaboTex は VolumeFraction(体積分率)を計算し表示、ファイル化が出来ますが印刷は出来ません。 この VolumeFraction を円グラフに表示する ODFVFGraph、又、複数の材料の VolumeFraction を 比較する CompareVolumeFraction

各種(StandardODF,TexTools,LaboTex,popLA,Bunge,MulTex)で計算した再計算極点図を Export した各種フォーマットを TXT2,或いは ASC フォーマットに変換する MakePoleFile

完全極点図のTXT2データをRD,TD,ND軸に対し回転を行うPFRotation(2014/11/09追加)

完全極点図から配向度関数を計算する Orientation

Nd-Fe-Bの磁性特性評価の応用できる反射極点図から配向度を計算する NDOrientation

高分子の配向評価の為にビームストッハ[°]の影がある Image データから影のない β -I プロファイルを得る ZigzagFiber

高分子材料のβ-Iプロファイルに隣の反射が重なっているデータのピーク分離を行う FiberPeakSeparate

Z 軸に対する高分子結晶軸の平行、垂直度合いを評価する FiberSimpleOrientation

StandardODF は c:¥ODF がワークディレクトリで解析結果の全てが展開されていて、次の解析は上書きして しまう。解析結果の Export-Inport を行う StandardODFExportInport

popLA は DOS 画面で操作するプログラムで Windows では解析結果の描画が難しい。 popLA の Harmonic、WIMV 双方の ODF 図の表示 ODFDisplay、極点図の表示 popLADatatoTXT2

六方晶3指数<->4指数変換、X軸<10·10> 或いは<210>と<2·1·10>或いは<100>の切り替え を行い、結晶方位図を表示する HexaConvert

体心正方晶から面心正方晶への変換ツール TetragonalBtoF(2013/10/04 追加)

Cubic の結晶方位(hkl)[uvw]<->Euler 角度変換と結晶方位図を表示する NewCubicCODisp

全結晶系の結晶方位(hkl)[uvw]入力から結晶方位図を表示する OrientationDisplay

EBSD 測定データを LaboTex の入力データに変換する EBSDtoLaboTex

Lotgering Exを実現する Lotgering

繊維配向評価を行う PreferredOrientation(2015/01/15 追加)

立方晶の ODF 解析を行う CTRODF (2015/09/25 追加)

極点図の等高線描画を行う PoleContourDisplay(2016/02/01 追加)

逆極点図の等高線描画を行う InverseCubicContourDisplay(2016/03/25 追加)

Cubic 以外の逆極点図等高線描画を行う InverseContourDisplay(2016/03/25 追加)

手入力で Material データベースを作成する MaterfialDataManual(2016/03/29 追加)

PPの配向性評価を行う PPOrientation(2016/06/09 追加)

極点図データを Windows 形式から PCAsctoUNIXAsc(2016/06/15 追加)

StandardODFの解析結果を描画する StandardODFDisplay(2017/03/21 追加)

LaboTex の解析結果を描画する LaboTexDisplay(2017/03/24 追加)

2つの極点図を比較する PoleFigureDifference(2017/07/11 追加)

Random 試料の管理を行う PoleNormalizer(2017/11/18 追加)

結晶方位密度のグラフ化を行う hkluvwlistDisplay(2018/06/13)

TexToolsの解析結果の描画を行う TexToolsDisplay(2018/07/24 追加)

MTEX の解析結果描画を行う MTEXDisplay(2018/07/28 追加)

結晶方位の軸回転を行う CrystalRotation(2018/08/27 追加)

軸配向極点図の平滑化を行う SMAxisOrientation(2018/09/17 追加)

各種測定データを ASC フォーマットに変換し、ODFPoleFigure2 ソフトウエアでデータ処理を行い、TXT2 フ オーマットを出力、rigaku、Bruker、PANalytical 社テキストデータに対応 TXT2 フォーマットデータは、PFGtoODF3 ソフトウエアにて各種 ODF で読み込める特有データに変換

ODF 関係

ODFPoleFigure2 の特徴

複数の極点図を同時読み込み、同時データ処理を行い、PFtoODF3に処理結果を渡す。 個々の極点図の測定強度とバックグランド強度の関係をα-Iプロファイルで確認出来る。 平滑化前と平滑化後の比較が出来る。 RD 補正の処理前、処理後が多重書きで比較出来る。 吸収補正曲線の確認、defocus 補正量の確認が出来る。 極点図の測定方法、指数変更が出来る。 Defocus 補正量を自動計算(Schulzの反射法 185mm、285mm、300mm)

バックグランドデータベースによる測定バックグランドの修正

最小化 Rp%計算

Random 試料がない場合でも、計算defocus補正をサポートし、Rp%Error計算を行う。

M ODFPoleFigure2 3.85SKFT[19/09/30] by CTR - 🗆
File Linear(absolute)Contour ToolKit Help InitSet BGMode Measure Condition Free OverlapRevision MinimumMode Rp% Normalization
Files select ASC(RINT-PC)
Calcration Condition hkl 0,0,0 Change Previous Next backgroud delete mode Smoothing Smoothing Ø DoubleMode OsingleMode OsingleM
Ref Trans Schulz reflection method v Change Absorption coefficien 2.66 1/cm Thickness 1.0 cm v Set 2Theta 0.0 dec. () 1/Kt Profile
Defocus file Select Trasmission defocus HKL+T
Image: Make defocus function files by TXT2 Files Image: Normalization
O Defocus(3) function files folder(Calc unbackdefocus) BB185mm v Limit Alfa Defocus value Free(LimitValue=0.0) v
Defocus(2) function files folder(Calc backdefocus) DSH12mm+Schulz+RSH5mm Search minimum Equal Angle RpM(Cubic only) O 1/Ra Profile
Smoothing for ADC OutFiles Cancel Calc Connect Cycles 2 Weight 10 Disp OutFiles Cancel Calc Connect After connection After connection CTR Connect OutFiles Cancel Colc Connect
19/02/26

読み込んだ極点図は3D表示

RD 補正(-5deg)+計算 defocus 補正+規格化

Rp%Error 評価

PFtoODF3 を起動

Option	Symme	etric So	oftware	PFto Data	ODF3 Help	8.41S	KT[19/	09/	30] by	CTR	R			
attice co	onstant —		n-Mean	wa-Intag	alData ty	·+						Initial	ize	Start
M	aterial													Diart
Structure Code(Symmetries after Schoenfiles) 7 - O (cubic)										۲	getHKL<-	Filename		
a 1.0	<=b	1.0	<=C	1.0	alpha	90.0	beta	90.	0 g	3mm	90.0		🗳 AllFile	Select
PF Data	Select	File(TXT	(h inten:	e) TXT2(a	h intens)		hkl		2Theta	Alr	ba scone	Alpha'	S AlobaF	Salaat
2	111-050	C_chR0B	00D2S_2		5,11101103	,	1,1,1		38.42	0.	0->75.0	0.0	75.0	
2	200-050	C_chR0B	00D2S_2	.TXT			2,0,0		44.64	0.	0->75.0	0.0	75.0	-
2	220-OS	C_chR0B	00D2S_2	.TXT			2,2,0		65.0	0.	.0->75.0	0.0	75.0	•
2							2,1,0		0.0			0.0	0.0	
2							2,1,1		0.0			0.0	0.0	
2							3,1,1		0.0			0.0	0.0	
2							4,0,0		0.0			0.0	0.0	
2							3,3,1		0.0			0.0	0.0	
2							4,2,2		0.0			0.0	0.0	
2							5,1,1		0.0			0.0	0.0	
2							5,2,1		0.0			0.0	0.0	
2							5,3,1		0.0			0.0	0.0	
Comme	nt 111	-OSC_cł	ROBOOD)2S_2.TXT	200-OS	C_chR0E	300D2S_2.T	XT 2	20-OSC_(hR0E	300D2S_2.T>	л		
Symmetric type Full OenterData Image Epf file save Image Epf file save														
			_						_ Lat	otex	(EPF),pop	oLA(R/	AW) file	name -
Тех б	1けデ-	-912	ĥ	$\left(\right)$	Epf	file sa	ave	>		abo	tex			
	, , ,	1	<i>.</i> ,											

周辺ソフトウエアは、ODFPoleFigure2から起動できます。

複数の合金状態、圧延状態の異なるプロファイルの多重記録

アルミニウム合金材料の多重記録、添加金属や割合によって、ピークシフト、あるいは圧延方法の違いにより ピーク強度の比率が異なる。

複数の材料の配向状態をプロファイルのまま比較する Cluster

各プロファイル間の相関係数を計算することで、各アルミ材のプロファイルの一致度で並び替え

ピークシフトを考慮して並び変え (プロファイルの類似性で並び変え)

H材とその他で分類される。

ProfiletoDivisionProfile で上記プロファイルの自動指数付き分割データ化

InverseAll により、random データに対する強度比のリスト化を行う。(Excelで扱える) Random プロファイルの指数付き分割データ

リスト化データを表示

🍝 TextDis	splay 1.10S								
File Help									
Randomm	ode Standard	ization Integra	ition						
	[111]	[200]	[220]	[311]	[222]	[400]	[331]	[420]	[422]
A-H18	0.435	1.053	1.446	2.532	0.234	0.811	0.519	0.965	1.65
A-T4	0.356	3.261	0.468	0.643	0.188	4.457	0.48	0.836	0.162
B-H18	0.52	0.968	1.942	1.545	0.572	0.781	1.289	1.1	1.321
B-O	0.5	2.535	0.589	0.879	0.512	3.445	0.592	0.768	0.811
C-Bach	0.111	2.835	1.427	0.953	0.0070	3.455	0.562	0.891	0.9
C-CAL	0.458	2.648	0.962	0.695	0.456	2.987	0.568	0.832	0.491
D-H14	0.184	1.438	1.489	2.911	0.014	1.428	0.43	1.303	0.99
D-H18	0.173	0.715	2.325	3.48	0.068	0.32	0.258	0.791	1.456
D-0	0.0040	3.922	0.594	0.752	-0.0090	4.753	0.23	0.587	0.485

Excel で表示

	A	В	С	D	E	F	G	Н	Ι	J
1	Randommo	de Standard	dization Inte	gration						
2		[111]	[200]	[220]	[311]	[222]	[400]	[331]	[420]	[422]
3	A-H18	0.435	1.053	1.446	2.532	0.234	0.811	0.519	0.965	1.65
4	A-T4	0.356	3.261	0.468	0.643	0.188	4.457	0.48	0.836	0.162
5	B-H18	0.52	0.968	1.942	1.545	0.572	0.781	1.289	1.1	1.321
6	B-0	0.5	2.535	0.589	0.879	0.512	3.445	0.592	0.768	0.811
7	C-Bach	0.111	2.835	1.427	0.953	0.007	3.455	0.562	0.891	0.9
8	C-CAL	0.458	2.648	0.962	0.695	0.456	2.987	0.568	0.832	0.491
9	D-H1 4	0.184	1.438	1.489	2.911	0.014	1.428	0.43	1.303	0.99
10	D-H18	0.173	0.715	2.325	3.48	0.068	0.32	0.258	0.791	1.456
11	D-0	0.004	3.922	0.594	0.752	-0.009	4.753	0.23	0.587	0.485
10	1									

リスト化したデータのグラフ表示

InverseAll 1.12ST[19/09/30] by CTR	- 🗆 🗙
File ProfiletoDivisionProfile Condition initialize Help	
File ProfiletoDivisionProfile Condition initialize Help Mode Material Mode InverseResultDisplay 1.01T[19/09/30] by CTR RandomSelect(division Af File Help Image: C:\CTR\DATA\Profile-Inverse\Aluminum\NEWFILE\result.txt Data select(ASC) ListDisp i Comment Comment Copyfile Display 18. Copyfile Display Backgound InverseResultDisplay	Next DISP

ODF 解析後の逆極点図や、試料ND方向の分布を 2D,3D 逆極点図表示 InverseDsiplay

M InverseDisplay 1.13T[19/09/30] by CTR –										
File Help Inverse[hkl]	Other Average C	FF Dataexpand OFF								
ODF										
🗆 LaboTex 🛛 p	oopLA	StdODF ND V		InverseAll						
InverseTXTFile	InverseTXTFile									
	C:\CTR\DATA\Profile-Inverse\Aluminum\NEWFILE\result.txt									
Inverse										
Max level 2.73	2D 🗸	3D Max-value(Max 1.0)) 0.15	Data Disp	List Dsiplay					
WindowsWidth	800 🗹 Dis	sp Intens. Random Level	0	[hkl] Intens.	InverseDsiplay					
					ContourDisplay					

2 D 表示

等高線表示

逆極点図 OutsidelistDisp;ay

六方晶 ODF 解析後の逆極点ファイルから逆極点図を表示する InverseDisplayHexa

LaboTexの逆極点図は、 β が0->60度の表示であり、一般的ではない。

多彩な表現方法をサポートします。

Random 試料の極点測定データから defocus 曲線を作成する DefocusMakeTABLE

アルミニウム材の無配向試料を測定

ODFPoleFiogure2 ソフトウエアでバックグランドを除去し TXT2 ファイルを作成

TXT2 から DefocusMakeTABLE ソフトウエアで多項式近似ファイルを作成

■ Filename-4F - ワードパッド	
ファイル(E) 編集(E) 表示(V) 挿入(D) 書式(Q) ヘルプ(H)	
filename,alfanumber,alfastartangle,alfastep,function-n,mm, 12/08/26 DefocusmakeTABLE 3.21X by CTR user HelperTex CTR for Defocus 220-sp150_chB00S_2.TXT,16,0.0,5.0,5,1.0,1.0026939895898205,-0.01520550225174112,0.0015180485404508327,-5.895104240719323E-5,9.88	Calc, 22815

111-sp150_chB00D3S_2.TXT,16,0.0,5.0,5,2.0,0.998474434124382,-0.0018060394277417897,1.212347203702795E-4,-5.83487077278693E-6,1.500010{
200-sp150_chB00D3S_2.TXT,16,0.0,5.0,5,3.0,0.9984390865533681,-0.002978909301400402,2.89685536154695E-4,-1.3589148555000515E-5,2.82388{
311-sp150_chB00D3S_2.TXT,16,0.0,5.0,5,4.0,1.0094494031377552,-0.001216357824651881,4.476933749762321E-4,-2.3388588134277192E-5,4.59222

この多項式近似ファイルを ODFPoleFigure2 ソフトウエアの defocus ファイルとして指定しておけば アルミニウム材の defocus 補正が自動的に行える。

defocus 曲線と Schulz 法の反射極点理論値の整合性チェックする TenckhoffCalc

Schulzの反射法による defocus 曲線には理論式があって、測定する2 θ 角度と受光スリット幅で決定出来る。 この理論式と如何に一致しているかでrandom試料の評価、あるいは光学系の評価が行える。 上記random試料測定の評価を行い、ほぼ一致している事が確認出来ます。

本来比例係数は一定であるが、Schulzスリットの配置と形状により2θ角度を変えた時、 一定であるべき、X線照射方向に対する試料位置の高さ方向の幅が減少するため、変化する。 格子定数や指数を TABLE 化し、波長別の2 θ 計算や、複合材のプロファイルの重なり具合をチェックする。TABLE 化は MakeMyICDD,波長別2 θ 計算は

MaterialData、重なり具合は CreateProfile

MakeMyICDD ソフトウエアは、ICDDから CTR ソフトウエアのデータベースに変換します。 MaterialData は登録されているデータの確認、たとえば、α-Fe とアルミニウムデータを比較すると

AluminumDIS	SP								
Cubic									
4.0494	(1.0)								
4.0494	(1.0)				A-IronDISP				
4.0494	(1.0)				Cubic				
90.0					2.8664	(1.0)			
90.0					2.8664	(1.0)			
90.0					2.8664	(1.0)			
1.54056					90.0				
9					90.0				
1	1	1	100.0	38.473	90.0				
2	0	0	47.0	44.722	1.54056				
2	2	0	22.0	65.099	6				
3	1	1	24.0	78.232	1	1	0	100.0	44.672
2	2	2	7.0	82.439	2	0	0	20.0	65.021
4	0	0	2.0	99.084	2	1	1	30.0	82.332
3	3	1	8.0	112.024	2	2	0	10.0	98.942
4	2	0	8.0	116.574	3	1	0	12.0	116.378
4	2	2	8.0	137.462	2	2	2	6.0	137.151

CreateProfile ソフトウエアはプロファイルで比較できます。拡大して Kβ位置の確認しバックグランド測定

あるいは配向が強くてプロファイル測定では確認出来ない、2 θ 位置を調べて極点測定に反映させます。

各種(StandardODF,TexTools,LaboTex,popLA,Bunge)で解析した結晶方位図

(ODF)の Export から最大 40 レベルの等高線を表示する ODFDisplay、

φ2断面

φ1断面

3面表示

1面表示

BCC,FCC のファイバー表示(ODFDisplay)

材料別のファイバー曲線を最大6ファイル多重記録する FiberMultiDisplay

Cubicの非対称ODF図もサポート

ODF 方位密度の高いListを作成

📓 ODFDisplay 1.25YT[13/12/31] by CTR	TextDisplay 1 110 CrVCI	TRY work YOR		+	
File RoeModeEnable Help 3dispODF OtherODF	S lextbispiay 1.115 C:#C	I K‡WOIK‡UDI	-Display=ODF.0	α.	
	File Help				
LaboTexpopLAStdODFTexToolsStdODF(c#ODBunge	Orientation	φ1	Φ	φ2	ODF
ODFTXTFile(or ODF15) C*CTR*DATA¥ODFDis play#ODFDisplaytest.TXT	{1 1 0}<0 0 1> goss	90.0	90.0	45.0	54.16
Contour (Max=40)	{0 0 1}<1 -1 0> RW	45.0	0.0	0.0	42.67
ODFMax=153.504 DispMax 153 Steplevel 4 Number=38	{0 0 1}<1 0 0> cube	0.0	0.0	0.0	42.62
Sample Symmetry(¢1)	{1 1 2}<-1 -1 1> copper	90.0	35.26	45.0	27.12
Triclinic 01 range set 01 range 0->90	{1 1 0}<1 -1 2> brass	54.9	90.0	45.0	26.99
φ1range 0->90	{1 1 0}<1 -1 1> P	35.26	90.0	45.0	26.98
Display- Bunge	{5 2 5}<1 -5 1>	15.23	47.12	68.2	26.67
Phi1	{1 1 1}<-1 -1 2>	90.0	54.74	45.0	26.6
Smoothing	{2 1 3}<-1 -4 2> R	46.91	36.7	63.43	9.8
Cycle 1 Center points 9 Cisplay	{1 3 2}<6 -4 3> S	27.03	57.69	18.43	8.92

各種ODF解析結果から、{hkl}<uvw>を決定する汎用 ODF 表示ソフトウエア

GPODFDisplay

ODF 図上をマウス左クリックで"+"を表示と再計算した Euler 角度位置を"O"で表示

マウス右クリックで、 ϕ 1、 Φ 、 ϕ 2プロファイルを表示、 Φ 、 ϕ 2方向は等方、 ϕ 1方向は Fiber

各種 ODF 解析結果のE x p o r t データから{hkl}<uvw>プロファイルを表示

予め登録されている結晶方位位置の方位密度をプロット

toODF±1step で結晶方位の 9.8 が得られる。

各種 ODF 解析結果の逆極点 Export データから<hkl>プロファイルを表示

逆極点図を 36Box に分け、外周を[001]から[111],[101],[001]と%でプロット

random データから、 β 方向の平均値を α 方向にプロットし、多項式近似を行い、

極点図 ASC ファイルを作成する、PoleFigureAsctoSMAsc

測定データ

透過、反射極点図は1ファイルに含まれる極点図データから透過極点図と反射極点

図に分離したファイルを作成する、PFTRSEparate

透過、反射データが1つのファイルに含まれている。

データ分離後のデータ

複数の極点図を使って、極点図のピーク位置を計算し、ピーク位置から結晶方位

{hkl}<uvw>を計算する

Active Control Active Control Active Control Active Control Image: Control Active Control Image: Control Image: Control Material select Holder C.CCTRIDATA/ODFPoleFigure Image: Control Image: Control Material select Holder C.CCTRIDATA/ODFPoleFigure Image: Control Image: Control Image: Control Material select Holder C.CCTRIDATA/ODFPoleFigure Image: Control Image: Contro Image: Control Image: C	y {1,1,1}4.09	{2,0,0}10.15		<u>≰</u> {2,2,0}3.33	_ = ×
Autohkluw Autohk				(
Ite Help Simulation Material select Cubic TXT2(*2,TXT*TXT) files select Holder C:\CTRIDATA\ODFPoleFigure FileName 111-OSC_chR0B02D2S_2.TXT 200-OSC_chR0B02D2S_2.TXT 220-OSC_chR0B02D2S_2.TXT (HKL) (11.1,1) {2.0,0} {2.2,0} Manualhkluw PeakSearch Peaksearch Peaksearch Image: Comparison of the select Peaksearch Image: Comparison of the select	ela Istalaza Masilla Fizakas I.a § PoleHKLUVWsearch 2.02XT[14/	03/31] by CTR	THE TOYTONIC SIT		
Material select Cubic TXTX/t2.TXT*TXT) files select Holder C:\CTR\DATA\ODFPoleFigure FileName 111-OSC_chR0B02D2S_2.TXT 200-OSC_chR0B02D2S_2.TXT (HKL) (1,1,1) {2.0,0} {2.2,0} Manualhkluww PeakSearch PeakSearch PeakSearch Exclude Iminimum level 0.1 Same peak scope(degree) 15 Search Iminimum level Iminimum level 1.0 Autohkluww Minimum level 1.0 Autohkluww	File Help Simulation				
TXT2(*2:TXT,* TXT) files select Holder C:\CTR\DATA\ODFPoleFigure FileName 111-OSC_chR0B02D2S_2.TXT 200-OSC_chR0B02D2S_2.TXT (HKI) (1.1,1) {2.0,0} {2.2,0} Manualhkluww Peaksearch Peaksearch Peaksearch minimum level 0.1 Same peak scope(degree) 15 Search Exclude Ø astart angle(1=0.0) Minimum level Limit Distance 7.5 Manual HKLUVW Minimum level 1.0 AutoHKLUVW	Material select	•]		
Holder C:\CTR\DATA\ODFPoleFigure FileName 111-OSC_chR0B02D2S_2.TXT_200-OSC_chR0B02D2S_2.TXT (HKL) (I,1,1) {2,0,0} {2,2,0} Manualhkluvw PeakSearch PeakSearch Peaksearch Peaksearch Exclude Ø cstart angle(!=0.0) Minimum level Limit Distance 7.5 Manual HKLUVW Minimum level 1.0 Autohkluvw	TXT2(*2.TXT,*.TXT) files select				
FileName 111-OSC_chR0B02D2S_2.TXT 200-OSC_chR0B02D2S_2.TXT 220-OSC_chR0B02D2S_2.TXT (HKL) (1,1,1) {2,0,0} {2,2,0} Manualhkluww PeakSearch PeakSearch PeakSearch Exclude Ø castart angle(!=0.0) Minimum level Limit Distance 7.5 Manual HKLUVW Minimum level 1.0 AutoHKLUVW	Holder				
FileName 111-OSC_chR0B02D2S_2.TXT 1HKU (11.1) (20.0) Manualhkluvw PeakSearch PeakSearch Exclude Øxtart angle(1=0.0) Minimum level 1HKLUVWSearch Limit Distance 7.5 Manual HKLUVW Minimum level 1.0 AutoHKLUVW	C:\CTR\DATA	NODFPoleFigure			
111-OSC_chR0B02D2S_2.TXT 200-OSC_chR0B02D2S_2.TXT (HKL) (1,1) (2,0,0) (2,2,0) Manualhkluww PeakSearch Peaksearch 0.1 Same peak scope(degree) 15 Exclude 0.1 Wanual HKLUVW Exclude 0.1 Manual HKLUVWSearch Limit Distance 7.5 Manual HKLUVW Minimum level 1.0 AutoHKLUVW	FileName				
HKU {1.1} {2.0.0} {2.2.0} ManualikLuvw Peak search Peak search Peak search Image: Search	111-OSC_chR0B02D2S_2.TX	C 200-OSC_chR0B02D2	2.TXT 220-OSC	_chR0B02D2S_2.T	ХТ
Interview Marualriktuw Peaksearch Peaksearch Peaksearch Image: Search	{HKL}				
Manualikluvw Peaksearch Peaksearch Peaksearch Peaksearch Image: Search Search Image: Search	{1,1,1} {2,0,0} {2,2,0}				
Peak Search Peak search Peak search Peaksearch minimum level 0.1 Same peak scope(degree) Image: Exclude Image: Exclude </td <td>Manualhkluvw</td> <td></td> <th></th> <td></td> <td></td>	Manualhkluvw				
Peak search 0.1 Same peak scope(degree) 15 Exclude Image: Search Image: Search Search HKLUVWSearch Image: Search Image: Search Image: Search Limit Distance 7.5 Manual HKLUVW Autohkluvw Minimum level 1.0 Auto HKLUVW	PeakSearch				
Peaksearch minimum level 0.1 Same peak scope(degree) 15 Exclude Image: Constant angle(I=0.0) Minimum level 2 HKLUVWSearch Image: Constant angle (I=0.0) Manual HKLUVW Autohkluvw Minimum level 1.0 Auto HKLUVW	Peak search				
Exclude Search Image: Search Image: Search Limit Distance 7.5 Autohkluww Minimum level 1.0 Auto HKLUVW	Peaksearch minimum le	vel 0.1 Sa	me peak scope(deg	gree) 15	
Image:	Exclude				Search
HKLUVWSearch Limit Distance Autohkluvw Minimum level 1.0 Auto HKLUVW	αstart angle(!=0.0)	Minimu	m level 2		
HKLUVWSearch Limit Distance 7.5 Manual HKLUVW Autohkluvw Minimum level 1.0 Auto HKLUVW					
Limit Distance 7.5 Manual HKLUVW Autohkluvw Minimum level 1.0 Auto HKLUVW	HKUDAWSearch				
Limit Distance 7.5 Manual HKLUVW Autohkluww Minimum level 1.0 Auto HKLUVW			1		
Autohkluvw Minimum level 1.0 Auto HKLUVW	Limit Distance 7.5	M	anual HKLUVW		
Autohkluvw Minimum level 1.0 Auto HKLUVW					
Minimum level 1.0 Auto HKLUVW	Autohkluvw				
	Minimum level 1.0	A	Ito HKLUVW		

ピークサーチおよび HKLUVW の決定

💰 TextDis	play 1.115 C:¥(CTR¥DATA¥O	DFPoleFigure	RESULT.TXT					- - ×
File Help									
1,1,1	aangle	bangle	Polelevel						
0	35.0	45.0	3.74	{001}<100>(0.0)	{122	2}<2-21>(0.0)	{132}<6-43>(5.0)	
1	35.0	135.0	4.06	{001}<100>(0.0)	{122	2}<2-21>(0.0)	{132}<6-43>(5.0)	
2	35.0	225.0	4.08	{001}<100>(0.0)	{122	2]<2-21>(0.0)	{132}<6-43>(5.0)	
3	35.0	315.0	3.55	{001}<100>(0.0)	{122	2}<2-21>(0.0)	{132}<6-43>(5.0)	
1,0,0	aangle	bangle	Polelevel						
0	90.0	0.0	9.25	{001}<100>(0.0)	{001	}<110>(0.0)		
1,1,0	aangle	bangle	Polelevel						
0	40.0	180.0	3.33	{001}<100>(5.0)	{112	2}<-1-11>(5.0)	{122}<2-21>(6.0)	
1	45.0	0.0	2.85	{001}<100>(0.0)	{122	2}<2-21>(1.0)		
2	45.0	95.0	3.28	{001}<100>(5.0)	{122	2}<2-21>(5.0)		
3	45.0	270.0	2.88	{001}<100>(0.0)	{122	2}<2-21>(1.0)		
Result									
	{001}<100>	{001}<110>	{112}<-1-11>	+ {122}<2-21>	{132}<6-43>				
1,1,1	1.0	0.0	0.0	0.5	0.4				
1,0,0	1.0	1.0	0.0	0.0	0.0				
1,1,0	1.0	0.0	0.12	0.5	0.0				

ų.

全てのピークが、{001}<100>で説明出来るので、{001}<100> Cube 方位であることが分かります。↩ 結果表示の()内は、↩

ピークサーヂした角度(α、β)とデータベースの(αb、βb)の距離を表します。+

5度間隔で測定した場合、最大5度異なっていても同一データです。↩

Result↩

測定範囲内に出現すべきピーク本数と実際にピークサーチした比率を表します。↩

{001}<100>は全ての極点図で 0.0 以外で、{122}<2-21>は{1,0,0}極点図が 0.0 で満足していない↓

探求するための Tool として作成した ODFInverseChecker

六方晶Mgで{132}<6-43>を比較する

非対称の場合

MaterialData などで使っている内部データベースでは、データベースフォーマット

が間違っているデータが登録されると、全てのデータベースの機能に障害が発生す

る。この障害を解消するてめの Tool として、DataBaseGurad

異常データがある場合、データ表示されない

🏙 MaterialData 1.24X by CTR	
File Help Disp	
_Search	
Cubic	-
LaboTex Trigonal(to Rhombohedral)	
Wave length-	
1.54056	
Select	
	-
Disp Cancel Return Structur	e

💩 DataBaseGuard 1.00XT[14/03/31] by CTR

File Help

C:¥CTR¥work¥MYICDD¥A-Iron.TXT :	normal
C:¥CTR¥work¥MYICDD¥Aluminum.TXT :	normal
C:¥CTR¥work¥MYICDD¥Aluminum0xide.TXT :	normal
C:¥CTR¥work¥MYICDD¥Beryllium.TXT :	normal
C:¥CTR¥work¥MYICDD¥Cerianite-CeO2.TXT :	normal
C:¥CTR¥work¥MYICDD¥Copper.TXT :	normal
C:¥CTR¥work¥MYICDD¥G-Iron_Austenite.TXT :	normal
C:¥CTR¥work¥MYICDD¥Gold.TXT :	normal
C:¥CTR¥work¥MYICDD¥Hydroxylapatite.TXT :	normal
C:¥CTR¥work¥MYICDD¥Magnesium.TXT :	normal
C:¥CTR¥work¥MYICDD¥Niobium.TXT :	normal
C:¥CTR¥work¥MYICDD¥Polyethylene2_6_naphthalenedicarboxylate.TXT :	normal
C:¥CTR¥work¥MYICDD¥Polyethyleneterephthalate.TXT :	normal
C:¥CTR¥work¥MYICDD¥Polypropylene.TXT :	normal
C:¥CTR¥work¥MYICDD¥Poly_phrnylene-sulfide.TXT :	normal
C:¥CTR¥work¥MYICDD¥Samarium.TXT :	normal
C:¥CTR¥work¥MYICDD¥Silicon.TXT :	normal
C:¥CTR¥work¥MYICDD¥Titanium.TXT :	normal
C:¥CTR¥work¥MYICDD¥Zirconium.TXT : abnormal >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	ORNO=5 <<<<<<<<<

データエラーを検出

各種 (StandardODF,TexTools,LaboTex,popLA,Bunge) で解析した結晶方位図 (ODF) から計算した極点図の Export から、ODF 入力極点図と再計算極点図を比較し ODF 解析の妥当性を評価する ValueODF

±1.5%に入れば問題ないが、この枠を外れる場合、例えば右下がりの場合、defocusの見直しが必要などの判断に使えます。

LaboTex は VolumeFraction(体積分率)を計算し表示、ファイル化が出来ますが

印刷が出来ません。この VolumeFraction を円グラフに表示する ODFVFGraph、

複数の材料の VolumeFraction を比較する CompareVolumeFraction

同一方位群で複数材料の VolumeFraction を計算し多重書き

📓 TextDisplay 1.002HT by CTR							
File Help							
Samplename goss	copper	brass	cube	S-1	S-2	S-3	S-4
sample1.POD10.5	9.8	10.0	10.0	10.2	10.2	10.1	10.3
sample2.POD26.2	14.3	10.0	10.1	5.1	7.2	6.5	6.3
sample3.POD6.1	6.3	5.2	6.0	8.7	8.6	4.1	6.8
sample4.POD10.0	15.1	15.1	10.5	5.1	5.1	4.1	3.2

ファイル作成でExcel表示

完全極点図から配向度関数を計算する Orientation

透過反射極点図を ODFPoleFigure2 ソフトウエアで各種補正を行い、PFconnection ソフトウエアで接続し Orientation ソフトウエアで配向度関数を評価する。

完全極点図のTXT2データをRD,TD,ND軸に対し回転を行うPFRotation

高分子材料の軸配を面配向に変換する

# PFRotation 1.00T[15/03/31] by CTR	
File Help	
TXT2 file select Path: W:測定データO/材料ーPP\2014-10-18-Fibertest\80%-10deg-ND File: 040_chS_2.TXT 110_chS_2.TXT 130_chS_2.TXT	
Rotation(degree) AlongRD 0 AlongTD 90 AlongND 0	Rotate PoleFigure
Check Previous Next 040_chST_2.TXT	Alfa angle check
Save © TXT(Pole) © ASC(Pole) © TXT2(Pole)	Save

TD軸に対し、90度回転を行うと面配向に変換出来ます。

Nd-Fe-B の磁性特性評価の応用できる反射極点図から配向度を計算する

NDOrientation

ODFPoleFigure2 で各種補正

β方向を平均し測定されていない部分外挿し、

配向度関数を計算

測定領域は、0->75.0 外挿に90.0までのデータで配向度関数を計算

不完全極点図から極点図を外挿する CreateExpPoleFigure

ODFPoleFigure2 で各種補正

CreateExpPOleFigure で測定していな部分を外挿

配向度関数の計算

高分子の配向評価の為にビームストッパの影がある Image データから影のない

β-I プロファイルを得る ZigzagFiber

対称操作で影の部分復活

基本的なデータ処理、プロファイルシフト、平滑化、バックグランド除去、プロファイル分離を含む

高分子材料のβ-Iプロファイルに隣の反射が重なっているデータのピーク分離を行

5 FiberPeakSeparate

ZigzagFiber から起動され分離ファイルを作成する。

分離後のプロファイルデータファイルの作成

Z軸に対する高分子結晶軸の平行、垂直度合いを評価する FiberSimpleOrientation

Stain 法による軸配向している高分子材料の簡易的な評価法(透過対称配置、透過垂直配置) 扱う材料により、測定反射が2点決められている。例えば、Polypropyleneなら、(110)、(040)である。 予め ZigzagFiber でデータ処理した結果から

データ処理後(極点図の RD 方向で描画するが、繊維試料台 MT 方向でも表示出来る(90度シフト))

▲ ND MD 方向に C 軸が並行で、a, b 軸はMD軸に垂直に近いことが
 理解できます。もし完全に並行なら、f c = 1.0、f b = -0.5である。

StandardODFはc:¥ODFがワークディレクトリで解析結果の全てが展開されていて、

次の解析は上書きしてしまう。解析結果の Export-Inport を行う StandardODFExportInport

🖄 StandardODFExportInport 1.000GS by CTR_user:HelperTex CTR 💦 📃 🗖 🗙
File Help
work
Export(ODF>Target) Inport(Target>ODF)
StandardODF Dir
c:\ODF
Target C:\tmp\Al\STandardODF
execute Copy Outmax Disp
Comment

標準退避ファイル

"OUTPUT1.TXT",1/4 極点図データ、偶数項の係数 C、極点図の誤差など "OUTPUT2.TXT",再計算極点図の値、偶数項 ODF の値、逆極点図の値など "OUTPUT3.TXT",奇数項の係数 C、奇数項を含む完全 ODF の値など

"Outmax.txt", 完全 ODF および偶数項 ODF の最大強度、再計算極点図の最大強度・個数・面指数

- "ODF13", 再計算極点図のデータ
- "ODF14", 偶数項 ODF のデータ
- "OUT15", 完全 ODF のデータ
- "ODF16", 逆極点図のデータ
- "EVNCOEF", 偶数項の展開係数
- "ODDCOEF" 奇数項
- Dtcubin1.txt ValueODF 対策
- Output10.txt ValueODF 対策

popLA の Harmonic、WIMV 双方の ODF 図の表示 ODFDisplay、

🔮 ODFDisplay 1.21Y by CTR user HelperTex CTR
File RoeModeEnable Help 3dispODF OtherODF
ODF LaboTex popLA StdODF TexTools StdODF(c:¥OD Bunge ODFTXTFile(or ODF15) C
Contour (Max=40) ODFMax= DispMax 10.0 Steplevel 1 Number=
Display Bunge □ Phi1 ☑ Phi2 □ Phi1 ○ RINT
Smoothing Cycle 4 Center points 4 Display

極点図の表示 popLADatatoTXT2

🛓 popLADatatoTXT2 1.32X by CTR user HelperTex CTR 📃 🗖 🔀
File Help
SelectFilename C:¥X¥CUBE90.FUL
Comment line cube90 >80:harm.
HKL or phi- {111} {200} {220} {311}
Create filename 111_CUBE90FUL2.TXT 200_CUBE90FUL2.TXT 220_CUBE90FUL2.TXT 311_CUBE90FUL2.TXT
File create O Square

或いは<210>と<2-1-10>或いは<100>の切り替えを行う HexaConvert

🕌 HexaConvert 1.01Y by CTR
File Help
A ☑ X-Axis[100] ([2-1-10])
MIller Notation (3Axis Notation)
Miller Bravais Notation(4 Axis Notation) V 0 V 0 V 0 1 V 1 V 2 0 V hkil uvxw
Eular Angle(fai1,FA1,fai2) 30.0 0.0 30.0
⊢ Material select
Magnesium. TXT
c/a 1.625 fai2 0 💌 Calc

4指数{0001}<11-20>を X軸[2-1-10]で3指数変換、及びODFのEuler角度計算、結晶方位図描画

全結晶系の結晶方位図を表示

🛃 OrientationDisplay 1.06YT[13/12/31] by CTR	
File Help	
Material	
Miller Indices (hkl)[uvw] -1 v -1 v 1 v 1 v -1 v 0 DISP Position 10 v Disp size 1200 v DISP BG Corr. White v Line size 5.0 v Minus	 ▼

体心正方晶から面心正方晶への変換ツール TetragonalBtoA

File. Help Select Tetraconal Body center Disp Material zirconialow-01-070-7302DISP Disp 1 5.7581 3.5781 5.1623 90 0 90 0 90 0 5 2 5.0602 5.0602 5.1623 90 0 90 0 90 0 5 2 5.0602 5.0602 5.1623 90 0 90 0 90 0 5 2 5 5 5 2 5 5 5 2 100 0 5 5 3.5781 (10) 5 5 5 3.5781 (10) 5 5 5 3.5781 (10) 5 5 5 5.1623 (1.4427) 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 0 1 1 1 1 1 1 2 2.0 13.3 35.45 2 1 1 2 2.0 13.3 35.45 2.55.1 2 0 17.8	٤.	TetragonalBtoF Ve	er1.00			– X					
Select Tetragonal Disp 1 5 7581 3 5781 5 1623 90 0 90 0 0 1 b Face Center Tetragonal 0 2 5 0602 5 0602 5 1623 90 0 90 0 0 1 b Face Center Tetragonal 0 3 5781 1 10 0 3 5781 (1 0) 5 3 5781 (1 0) 5 3 5781 (1 0) 5 3 5781 (1 0) 5 3 5781 (1 0) 5 3 5781 (1 0) 5 3 5781 (1 0) 5 3 5781 (1 0) 5 3 5781 (1 0) 5 1 0 1 100.0 30.369 90.0 90.0 90.0 90.0 90.0 90.0 90.0 1 1 1 1 1 1 0 1.33 35.45 2 0 1.33 85.45 2.65.61 1 1 2 1.3	File	Help									
Material zirconialow-01-070-7302DISP Disp. to Face Center Tetragonal 5.0602.5.0602.5.1623.90.0.90.0 Image: Center Tetragonal Image: Cente	٤	ielect Tetragonal Bo	dy center								
3.5781 3.5781 5.1623 90 0 90 0 90 0 b Face Center Tetragonal Catc 5 0602 5 1623 90 0 90 0 90 0 I TextDisplay 1.115 C:VCTRWworkWMYICDDVDISPVdisp.bt Flie Help Zirconialow-01-070-7302DISP Tetragonal 3.5781 (10) 3.5781 (10) 5.1623 (1.4427) 90.0 90.0 90.0 5.1623 90.0 5.0602 90.0 90.0 90.0 90.0 90.0 1 90.0 1 90.0 1 90.0 1 90.0 1 90.0 1 90.0 1 90.0 1 90.0 1 90.0 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2		Material	zirconialow-01-	-070-7302DISP		Disp					
to Face Center Tetraconal Calc 5 0602 5 0602 5 0.1623 90.0 90.0 90.0 Image: TextDisplay 1.115 C:XCTRWoorkWBt/DEVFaceCenter.TXT TextDisplay 1.115 C:XCTRWoorkWBt/DEVFaceCenter.TXT Flie Help TextDisplay 1.115 C:XCTRWoorkWBt/DEVFaceCenter.TXT Flie Help Tetragonal 3.5781 (1.0) 5.1623 (1.4427) 90.0 5 1623 90.0 5 1623 90.0 5 1623 90.0 5 1623 90.0 5 1623 90.0 5 1623 90.0 5 1623 90.0 5 1623 90.0 5 1623 90.0 5 1623 90.0 90.0 90.0 1 90.0 1 90.0 2 90.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			3.5781 3.5781	5.1623 90.0 90	.0 90.0						
Calc 5.0602 5.0602 5.0623 9.0 9 0.0 90.0 Image: TextDisplay 1.115 C:VCTRVworkVBI0PUGDVDISPVdisp.bdt Image: TextDisplay 1.115 C:VCTRVworkVBI0PUGDVDISPVdisp.bdt File Help Image: TextDisplay 1.115 C:VCTRVworkVBI0PUGDVDISPVdisp.bdt Image: TextDisplay 1.115 C:VCTRVworkVBI0PUGDVDISP Tetragonal 5.0602 (1.0) 5.0602 (1.0) 5.0602 (1.0) 3.5781 (1.0) 5.0602 (1.0) 5.0602 (1.0) 5.0602 (1.0) 5.1623 (1.4427) 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 1.54056 42 1 1 1 100.0 30.369 2.9411 1 0 1.33 3.54.5 2.53 1 1 2 1.3 43.181 2.093 2 0 1.78.51.005 1.78.51.005 1.789 1.51.5		to Face Center Tetra	agonal								
Image: TextDisplay 1.11S c:¥CTR¥work¥BtoF¥facecenter.TXT File Help Zirconialow-01-070-7302DISP TextBiplay 1.11S C:¥CTR¥work¥BtoF¥facecenter.TXT Tetragonal 3.5781 (1.0) 3.5781 (1.0) 5.6622 (1.0) 5.1623 (1.4427) 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 1.54056 42 1 1 1 100.0 30.369 2.941 1 0 13.3 35.45 2 0 0 2 28.8 34.726 2.581 1 0 2 1.3 43.181 1 1 2 1.3 43.181 1 1 2 1.3 43.181 1 1 2.3 59.655 2.53 1 0 3 12.3 59.655 1.511 1 3 12.3 59.655 1.561 2 0 1 1.4.9 63.184 1.47 1.29 1.3 1.41 2.3 2.2 1.62 1.526		Calc	5.0602 5.0602	5.1623 90.0 90	.0 90.0						
File Help Zirconialow-01-070-7302DISP Tetragonal 3.5781 (1.0) 3.5781 (1.0) 5.623 (1.4427) 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 1 90.0 228.8 1 0 1 0 1 0 1 0 1 0 1 1 2 0 3.5781 1 0 2 90.0 90.0 90.0 90.0 90.0 1.54056 42 1 1 1 0 2 0 1.7.8 1 1 1 2.3 2 0 3 1.2.3 4 2 2 1 2	4	TextDisplay 1.119	5 c:¥CTR¥work¥M	YICDD¥DISP¥dis	p.txt	S TextDisplay	1.115 C:¥C	TR¥work¥	BtoF¥facecenter.TXT		
zirconialow-01-070-7302DISP Tetragonal 3.5781 (1.0) 5.6602 (1.0) 5.6602 (1.0) 5.6602 (1.0) 5.6602 (1.0) 5.6602 (1.0) 5.6603 (1.0) 5.6604 (1.0) 90.0 90.0 90.0 90.0 90.0 90.0 90.0 1.54056 42 1 1 1 1 0 13.3 35.45 2 0 0 1.3 43.181 1 1 2.22.88 34.726 0 0 2.28.8 34.726 2.581 1 1 2.13.3 43.181 1 1 2 1.3 43.181 2.093 2 0 17.8 51.005 2 2 0 1.789 2 2 1 1.54256 2 1 1.23.5 59.6565 1.511 1 3 1.23 59.656 1.561 2 <td< td=""><td>File</td><td>e Help</td><td></td><td></td><td></td><td>File Help</td><td></td><td></td><td></td><td></td><td></td></td<>	File	e Help				File Help					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	zin Te 3.5	conialow-01-070- tragonal 5781 (1.0)	-7302DISP			zirconialow-0 ⁻ Tetragonal 5.0602	(1.0)	DISP			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.8 5.1	623 (1.0)	27)			5.0602	(1.0)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	90	.0				90.0	(1.0202)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	90	.0				90.0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90	.0				90.0					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.3	4006				1.54056					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0	1	100.0	30 369	42			400.0		0.044
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	2	28.8	34,726		1	1	100.0	30.369	2.941
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	0	13.3	35.45		0	2	20.0	34.720	2.001
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0	2	1.3	43.181	1	1	2	13.0	33.43 43.181	2.003
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	2	12.0	50.468		0	2	12.0	50.468	1 807
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	0	0	17.8	51.005	2	2	0	17.8	51.005	1.007
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	0	1	0.1	54.217	2	2	1	0.1	54 217	1.69
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0	3	12.3	59.565	1	1	3	12.3	59 565	1.551
2 0 2 14.9 63.184 2 2 2 14.9 63.184 1.47 2 1 2 0.3 68.995 3 1 2 0.3 68.995 1.36 0 0 4 1.8 73.289 0 0 4 1.8 73.289 1.21 2 2 0 4.3 75.019 4 0 0 4.3 75.019 1.265 1 0 4 0.2 78.764 1 1 4 0.2 78.764 1.214 2 1 3 8.3 82.195 3 1 3 8.3 82.195 1.172 3 0 1 4.0 83.034 3 3 1 4.0 83.034 1.162 1 1 4 3.3 84.136 2 0 4 3.3 84.136 1.15	2	1	1	23.2	60.526	3	1	1	23.2	60.526	1.528
2 1 2 0.3 68.995 3 1 2 0.3 68.995 1.36 0 0 4 1.8 73.289 0 0 4 1.8 73.289 1.291 2 2 0 4.3 75.019 4 0 0 4.3 75.019 1.265 1 0 4 0.2 78.764 1 1 4 0.2 78.764 1.214 2 1 3 8.3 82.195 3 1 3 8.3 82.195 1.172 3 0 1 4.0 83.034 3 3 1 4.0 83.034 1.162 1 1 4 3.3 84.136 2 0 4 3.3 84.136 1.15	2	0	2	14.9	63.184	2	2	2	14.9	63.184	1.47
0 0 4 1.8 73.289 0 0 4 1.8 73.289 1.291 2 2 0 4.3 75.019 4 0 0 4.3 75.019 1.265 1 0 4 0.2 78.764 1 1 4 0.2 78.764 1.214 2 1 3 8.3 82.195 3 1 3 8.3 82.195 1.172 3 0 1 4.0 83.034 3 3 1 4.0 83.034 1.162 1 1 4 3.3 84.136 2 0 4 3.3 84.136 1.15	2	1	2	0.3	68.995	3	1	2	0.3	68,995	1.36
2 2 0 4.3 75.019 4 0 0 4.3 75.019 1.265 1 0 4 0.2 78.764 1 1 4 0.2 78.764 1.214 2 1 3 8.3 82.195 3 1 3 8.3 82.195 1.172 3 0 1 4.0 83.034 3 3 1 4.0 83.034 1.162 1 1 4 3.3 84.136 2 0 4 3.3 84.136 1.15	0	0	4	1.8	73.289	0	0	4	1.8	73.289	1.291
1 0 4 0.2 78.764 1 1 4 0.2 78.764 1.214 2 1 3 8.3 82.195 3 1 3 8.3 82.195 1.172 3 0 1 4.0 83.034 3 3 1 4.0 83.034 1.162 1 1 4 3.3 84.136 2 0 4 3.3 84.136 1.15	2	2	0	4.3	75.019	4	0	0	4.3	75.019	1.265
2 1 3 8.3 82.195 3 1 3 8.3 82.195 1.172 3 0 1 4.0 83.034 3 3 1 4.0 83.034 1.162 1 1 4 3.3 84.136 2 0 4 3.3 84.136 1.15	1	0	4	0.2	78.764	1	1	4	0.2	78.764	1.214
3 0 1 4.0 83.034 1 1 4 3.3 84.136 2 0 4 3.3 84.136	2	1	3	8.3	82.195	3	1	3	8.3	82.195	1.172
1 1 4 3.3 84.136 2 0 4 3.3 84.136 1.15	3	0	1	4.0	83.034	3	3	1	4.0	83.034	1.162
	1	1	4	3.3	84.136	2	0	4	3.3	84.136	1.15
	Ŀ			III		·	-	-			

EBSD 測定データを LaboTex の入力データに変換する EBSDtoLaboTex

🕌 EBSDtoLaboTex 1.01X by CTR user HelperTex CTR
File Help
Lattice constant
Structure Code(symmetries after Schoenfiles) 7 - O (cubic)
a 1.0 b 1.0 c 1.0 alfa 90.0 beta 90.0 gamm 90.0
Step for output ODF Weight for data Angle Unit Angle Convention 5.0 I - present I - deg I
Input data format Check data Line 10 Select file 4 Select ID 1
Out data Line 6 P1 11 F 13 P2 12
Comment-
Start

OxFord,OIM (TSL) に対応しています。

Lotgering手法を実現するLotgeringソフトウウア

材料表面の面分布としては、昔から逆極点手法が用いられていますが、計算方法が若干異なる Lotgering法も用いられている。本ソフトウエアは連続測定データから簡単な操作で Excelで読み込めるリスト表示を行います。

