結晶方位表示のための

CrystalOrientationDisp

Ver.2.11M

http://www.geocities.jp/helpertex2

操作上、不明な点、おかしな挙動がある場合、問い合わせ下さい。

*Version 2.00	2015/01/05	NewCubicCODisp に Tetoranal,Orthorombic 追加
*Version 2.01	2015/01/10	最大指数99、{h,k,l} <u,v,w>表示</u,v,w>
*Version2.02	2015/01/13	Hexagonal 選択では HexaConvert を起動
*Version2.03	2015/01/25	GPODFDisplay との連携
*Version2.06	2022/01/24	eulerangle(xx,0,0)対応
*Version2.07	2022/06/10	retuireStructure Strcuture.txt に Strcture2.txt(real)追加
*Version2.08	2024/12/26	計算極点図の描画
*Version2.10	2025/01/16	表示 Triclinic->Orthorhombic 確認
*Version 2.11	2025/02/04	CrstalOrientationDisp と連携

目次

- 概要
 計算式
 ソフトウエアの使い方
 外部起動
 Polyethylene
 Hexagonal
 GPODFDisplayとの連携
 極点図の描画

 8.1 Cubic
 8.2 Tetragonal
 8.3 Orthorhombic

 9. CrystalOrientationDispで確認
 - 9.2 PFRotationで確認

ODF 解析を行い、結晶方位が決まった時、その状態を他人に説明する事が困難な事がある。 そのような時、図で示せると便利である。

本ソフトウエアは、Cubic, Tetragonal, Orthoromibicに限るが (hkl)[uvw]を入力する事で結晶方位図を表示出来し、報告書に画像を貼り付けて説明する為に作成された。 Hexagonalが選択された場合、HexaConvertを起動する。

従来の NewCubicCODisp と同じ機能である。

入力部分と、表示部分を別ソフトウエアで作成していが、表示機能も取り込んだ。 ただし計算部分を別のアルゴリズムで作成した。

本アルゴリズムは、ODFEulerAngle ソフトウエアで開発した物を流用した。

表示プログラム(Disp3DTriclinic2.jar)

単独では(112)[1-10]を表示する。

緑軸:結晶のa軸 黄軸:結晶のb軸 紫軸:結晶のc軸材料面:青色の面(裏側は紫の面) RD方向: 材料面に表示している方向

2. 計算式

格子定数(a, b, c, 90, 90, 90)

Euler角度をBunge (ϕ_1 、 Φ 、 ϕ_2) ->結晶方位 {hkl} <uvw>の関係

 $\mathbf{h} \ast \mathbf{a} = \mathbf{n} \ast \mathbf{s} \text{ i } \mathbf{n} \Phi \ast \mathbf{s} \text{ i } \mathbf{n} \phi_2$

k * b = n * s i n Φ * c o s ϕ_2

 $1 * c = n * c o s \Phi$

 $u / a = m (\cos \phi_1 * \cos \phi_2 - \sin \phi_1 * \sin \phi_2 * \cos \Phi)$

 $v / - b = m (-c \circ s \phi_1 * s i n \phi_2 - s i n \phi_1 * c \circ s \phi_2 * c \circ s \Phi)$

 $w \neq c = m * s i n \phi_2 * s i n \Phi$ $\{h k l \} < u v w > -> (\phi_1, \Phi, \phi_2)$

3. ソフトウエアの使い方

ODFPoleFigure2->TooKit->OrientationDisplay-CrystalOrientationDisp C:\u00e4CTR\u00e4bin\u00e4NewCrystalOrientationDisp.jar

CrystalOrientationDisp 2.08ST[25/12/31] by CTR
File Help Symmetry Special Index
Material Material Cubic Aluminum
10 10 10 90 0 90 0 90 0
(hkl)[uvw] 1 1 1 -1 0 Calc
Euler Angle (p1 P p2) <=90 0.0 54.7356 45.0 Calc
Present Londition Euler Angle Double Miller Indices
DISP
Position 10 V Disp size 400 V DISP
BG color Black V Line size 2.0 V Minus
OK Return Structure Polefigure FWHM 5 degree Polefigure 1,1,1 Orthorhombic DIsp

結晶系の指定

_ Material	
Material Cubic AluminumDISP	
1.0 1.0 1.0 90.0 90.0 90.0	
(hkl)[uvw] 或いは Euler 角度を入力する。	
Miller Indices	
Euler Angle	
(p1 P p2) 0.0 54.7356 45.0 Calc	
	例えば
(-111)[110]を入力して横の Calc で Euler 角度を計算する。	
Miller Indices	
(hkl)[uvw] 1 • 1 • 1 • 1 • 0 • Calc	
Euler Angle	
(p1 P p2) <=90 0.0 54.7356 45.0 Calc	
Euler 角度が表示される。DISPの DISP で結晶方位図が表示される。	
DISP	
Position 10 Disp size 400 DISP	
BG color Black Line size 2.0 Minus	

DISPの中の Position, Disp size, BG color, Line size は表示パラメータです。

画面上でマウス操作をすると、結晶方位の表示が変化する。

Minus 操作でユニットセルの変更が可能になります。

E u l e r 角度の入力

(0.0 43.0 0.0)を	入力			
Euler Angle				
(p1 P p2) <=90	0.0	45.0	0.0	Calc

Euler角度の横のCalcで計算

Miller Indices	
Euler Angle	
(p1 P p2) <= 90 0.0 45.0 0.0 Calc	
Present Condition	
Euler Angle	
0.0/43.0 0.0	
Double Mitter Indices	
0.0.682.0.7314.1.0.0.0.0	
入力された Euler角度、doubleの指数を表示し	
結晶方位を整数化し、その整数化した結晶方位に対するEuler角度が表示され	る。
この計算部分を ODFEulerAngle ソフトウエアで作成した。	

4. 外部起動

java –jar c:/CTR/bin/NewCubicCODisp.jar EULER F1 F F2

CrystalOrientationDisp 2.03YT[15/10/31] by CTR							
Material Cubic AluminumDISD							
1.0 1.0 1.0 90.0 90.0 90.0							
Miller Indices							
(hkl)[uvw] 7 26 27 26 -7 0 Calc							
Euler Angle (p1 P p2) <=90 0.0 44.9212 15.0685 Calc							
Present ConditionEuler Angle							
0.0 45.0 15.0							
0.183 0.683 0.7071 0.9659 -0.2588 0.0							
DISP							
Position 10 Disp size 400 V DISP							
BG color Black → Line size 2.0 → Minus							
OK Return Structure							

EULER 0.0 45.0 15.0 で起動された場合

特別に登録されている方位と対称性

File Help Symmetry Special Index Miller Indices Cube (bkl)[uswi] Copper
Miller Indices Cube
(bkl)[uvw] Copper
(uni)[auu]
Brass
Euler Angle Goss
(p1 P p2) <=90 0. S
R R

対称方位を表示
MADECAM

File	Help	Symmetry	Special Index						
Mill	er Indice:	Disp							

Cubeの方位と対称性

Miller I (hk	ndices)[uvw] 0	-0	¥ 1 ¥	1	• 0 •0	¥	Calc
Euler A	Angle						
(p1 F	p2) <=90	0.0	0.	0	0.0		Calc
1:	(0 0 1)[1	0 0]	0.0	0.0	0.0		
2:	(0 1 0)[1	0 0]	0.0	90.0	0.0		
3:	(0 1 0)[0	0 1]	90.0	90.0	0.0		
4:	(0 0 1)[0	-1 0]	90.0	0.0	0.0		
5:	(0 0 1)[0	-1 0]	0.0	0.0	90.0		
6:	(1 0 0)[0	-1 0]	0.0	90.0	90.0		
7:	(1 0 0)[0	0 1]	90.0	90.0	90.0		
8:	(0 0 1)[-	1 0 0]	90.0	0.0	90.0		

Copper方位

	Miller Indice (hkl)[u∨	s W] [1	▼ 1	2	Ŧ	-1	-1	▼ 1	Ŧ	Calc
[(Euler Angle (p1 P p2)	ı <=90	90.0		35.0	2644	45	5.0		Calc
1: 2:	(1 (1	1 2)[-1 2 1)[1	-1 1] -1 1]	90.0 39.2	I 35 32 65	5.264 5.905	45.0 26.565			

Brass方位

-Miller Ir (hkl	ndices)[uvw] 1	1	• 0 •	1	▼ -1	• 2	¥	Calc
Euler A	ngle p2) <=90	54.7356	6 9 0.	.0	4	5.0		Calc
1: 2: 3:	(1 1 0)[1 (1 0 1)[- (0 1 1)[2	-12] 1-21] -11]	54.736 9 35.264 4 35.264 4	90.0 45.0 45.0	45.0 90.0 0.0			

Goss方位

Miller In	ndices						
(hk	l)[uvw] 1	▼ 1	- 0 -	0	T 0 T 1	-	Calc
	,			. ,-			
-Euler A	ngle						
(n1 P	n2)<=90	lan n		10	45.0		Calc
(P''	pz) <-00	150.0	Joc	5.0	140.0		
1:	(1 1 0)[001]	90.0	90.0	45.0		
2:	(1 0 1)[D -1 D]	0.0	45.0	90.0		
3:	$(0 \ 1 \ 1)$	1 0 0]	0.0	45.0	0.0		

S方位

-Miller I (hk	Indices— <l)[u∨w]< th=""><th>1</th><th>• 3</th><th>2</th><th>¥</th><th>6</th><th>-4</th><th>3</th><th>¥</th><th>(</th><th>Calc</th></l)[u∨w]<>	1	• 3	2	¥	6	-4	3	¥	(Calc
Euler /	Angle ^o p2) <=	90	27.03	19	57.6	6885	18	8.4349			Calc
1: 2: 3:	(1 3 2 (2 1 3 (2 3 1	2)[6 - 3)[-3 1)[3 -	4 3] -6 4] 4 6]	27.1 58.3 52.3	D32 5 98 3 866 7	7.688 6.699 4.499	18.435 63.435 33.69				

R方位

- ^{Miller} (hł	Indices— <i)[u∨w]< th=""><th>2</th><th>▼ 1</th><th>▼ 3</th><th>¥</th><th>-1</th><th>▼-4</th><th>• 2</th><th>¥</th><th>Calc</th><th></th></i)[u∨w]<>	2	▼ 1	▼ 3	¥	-1	▼-4	• 2	¥	Calc	
Euler (p1 F	Angle P p2) <=	=90	46.91	13	36.6	6992	6	3.4349		Calc	
1: 2:	(2 1 (1 3	3)[-1 2)[4	-42] -21]	46. 14.	911 3 963 5	6.699 7.688	63.435 18.435				

3: (2 3 1)[1 -2 4] 64.934 74.499 33.69

PolyethyleneはOrthorombicであり、格子定数は

Polyethylene	DISP				
Orthorhombio	:				
7.4	(1.0)				
4.93	(0.6662)				
2.54	(0.3432)				
90.0					
90.0					
90.0					
1.54056					
9					
1	1	0	100.0	4.1029	21.642
2	0	0	35.0	3.7	24.032
2	1	0	5.0	2.9593	30.175
0	2	0	20.0	2.465	36.418
0	1	1	25.0	2.2579	39.893
3	1	0	20.0	2.206	40.875
1	1	1	20.0	2.1596	41.792

しかし、LaboTexの場合、Ζ軸に最長の軸を合わせる為、

PolyethyleneDISP

(1.0)				
(1.9409)				
(2.9134)				
1	1	100.0	4.1029	21.642
0	2	35.0	3.7	24.032
1	2	5.0	2.9593	30.175
2	0	20.0	2.465	36.418
1	0	25.0	2.2579	39.893
1	3	20.0	2.206	40.875
1	1	20.0	2.1596	41.792
	1.0) 1.9409) 2.9134) 1 1 2 1 1	1.0) 1.9409) 2.9134) 1 1 2 2 1 2 2 0 1 0 1 3 1 1	1.0) 1.9409) 2.9134) 1 1 100.0 2 35.0 1 2 5.0 2 0 20.0 1 0 25.0 1 3 20.0 1 1 20.0	1.0) 1.9409) 2.9134) 1 1 100.0 4.1029 2 35.0 3.7 1 2 5.0 2.9593 2 0 20.0 2.465 1 0 25.0 2.2579 1 3 20.0 2.206 1 1 20.0 2.1596

と表現されます。同じ(111)[1·10]でも Euler 角度は異なります。

X CrystalOrientationDisp 2.03YT[15/10/31] by CTR □ □ □ □ □ □ □	CrystalOrientationDisp 2.03YT[15/10/31] by CTR
File Help Symmetry Special Index	File Help Symmetry Special Index
Material	_ Material
Material Orthorhombic PolyethyleneDISP	Material Orthorhombic PolyethyleneDISP
1.0 0.666 0.343 90.0 90.0 90.0	1.0 1.941 2.913 90.0 90.0 90.0
Miller Indices	Miller Indices
	(hkl)[uvw] 1 • 1 • 1 • 1 • -1 • 0 • Calc
Euler Angle	Euler Angle
(p1 P p2) <=90 0.0 31.758 33.6716 Calc	(p1 P p2) <=90 0.0 73.0318 62.7413 Calc
Present Condition	Present Condition
Luier Angle	Luier Angle
Deckle Miller Tolling	Dudle Miles Indian
Double Miller Indices	0.183.0.683.0.7071.0.0650.0.2588.0.0
0.103 0.003 0.7071 0.9039 -0.2000 0.0	0.103 0.003 0.7071 0.8038 -0.2300 0.0
DISP	DISP
Position 10 Disp size 400 DISP	Position 10 V Disp size 400 V DISP
BG color Black Line size 2.0 Minus	BG color Black ▼ Line size 2.0 ▼ Minus
OK Return Structure	OK Return Structure

LaboTexによる(111)[1-10] (0.0,73.01,62.73)

bC↓→	Step 5.00	. <mark>19-</mark>	0.00 ÷ <mark>Ф=</mark>	73.01 🕂 😤	62.73 🕂 HKL (1 1 1)	UVW [1 -1	0]
		>		>	•)	
•	>							

PFExport

TexToolsの為に、指数入れ替え(011->110,110->011,002->200)

Material Polyethylene.txt	Start
Structure Code(Symmetries after Schoenfiles) 3 - D2 (orthorhombic)	getHKL<-Filename
a 1.0 <=b 0.6662 <=c 0.3432 alfa 90.0 beta 90.0 gamm	90.0
rPF Data	
SelectFile(TXT(b,intens),TXT2(a,b,intens.)) h,k,l 2Theta A	Alfa Area 🛛 AlfaS AlfaE Select
002_labotex-rp_2.TXT 2,0,0 0.0 0	.0->90.0 0.0 90.0 💟
011_labotex-rp_2.TXT 1,1,0 0.0 0	.0->90.0 0.0 90.0 🔽
110_labotex-rp_2.TXT 0,1,1 0.0	.0->90.0 0.0 90.0 🗸

LaboTexの(111)[1-10]をTexToolsで読み込み

(111)[0-11]として計算される。

LaboTexと同様にZ軸に最長軸を合わせた計算をTexToolsで解析

ODF Calculation Setup	×
Crystal info. Crystal system Orthorhombic a 1.00 α 90 b 1.94 β 90 c 2.91 γ 90	Pole figure info. Number of pole figures 3 1st PF 2nd PF 3rd PF h 1 k 1 I 0 Browse PF file location 译 S:¥Version管理¥Pole¥CrystalOrientationDisp(旧NewC
 ✓ Normalizing pole figures before ODF calculation ✓ With Orthogonal sample symmetry 	Resolution: 5.00
Save as S¥Version管理¥Pole¥CrystalOrientatio	nDisp(IEINewCubicCODisp)=Ver=2.01(2015=01=10)¥PE
	Max = 256.7 — 1.0

LaboTexと同様に、(111)[1-10]として計算される。

6. Hexagonal

🔏 CrystalOrientationDisp 2.03YT[15/10/31] by CTR
File Help Symmetry Special Index
r Materiai
Material Cubic AluminumDISP
1.0 1.0 1.0 90.0 90.0 90.0
Miller Indices
(hkl)[uvw] 1 • 1 • 1 • 1 • Calc
Euler Angle
(p1 P p2) <=90 0.0 54.7356 45.0 Calc
Present Condition Euler Angle 0.0 45.0 15.0
Double Miller Indices
0.183 0.683 0.7071 0.9659 -0.2588 0.0
Position10Disp size400DISPBG colorBlackLine size2.0Minus
OK Return Structure

Hexagonal	を選択

🔏 CrystalOrier	ntationDisp 2.02YT[15/10/31] by CTR 🛛 🗆 🖾
File Help S	MaterialData 1.33XT[15/10/31] by CTR
- Material —	File Help Disp
Mater	Search
	Trondgonal .
Miller Indice:	LaboTex Trigonal(to Rhombohederal)
(hkl)[uvw	Wave length
Euler Angle	1.54056 -
(p1 P p2)	Select
⊢ Present Con	Magnesium.TXT 👻
Euler Angl	01-071-6543
Double Mil	77908(ICSD) Magnesium Formula: Mg
DISP	
Position	
BG cold	Disp Cancel Return Structure
	A A

例えば、HexagonalのMagnesiumを選択すると、

HexaConvertソフトウエアは立ち上がり、Magneseiumが表示される。

▲ HexaConvert 1.06YT[15/10/31] by CTR
File Help
A 🛛 X-Axis[100] ([2-1-10]) 🔶 . B 🖉 X-Axis[210] ([10-10])
Miller Bravais Notation(4 Axis Notation)
Eular Angle(fai1,FAIfai2) 90.0 Material select
Magnesium.TXT
c/a 1.625 fai2 0 - Calc
DISP
Position 10 Disp size 200 DISP
BG Corr Black Line size 1.0 MINUS

File Help
A 🛛 X-Axis[100] ([2-1-10]) 🕂 B 🗹 X-Axis[210] ([10-10])
MIller Notation (3Axis Notation) Image: Willing to the second
Miller Bravais Notation(4 Axis Notation)
Eular Angle(fai1.FAIfai2) 90.0 25.131 30.0
Magnesium.TXT
c/a 1.625 fai2 0 - Calc
BG Corr Black Line size 1.0 MINUS

Calcで、Euler角度が表示される。

7. GPODFDisplayとの連携

GPODFDispay の CrystalOrientation から起動されると、

GPODFDisplay 1.12T[15/10/31] by CTR	
File AluminumDISP View Help	
30DF	Max=18.65 Min=-0.02
A 📈 CrystalOrientationDisp 2.03YT[15/10/31] by CTR	18.0
C File Help Symmetry Special Index	16.0
C Material	14.0
Material Cubic AluminumDISP	12.0
1.0 1.0 1.0 90.0 90.0 90.0	9.0
Miller Indices	7.0
(hkl)[uvw] 1 • 1 • 2 • -1 • -1 • 1 • Calc	_ 5.0 _ 4.0
Euler Angle	2.0
(p1 P p2) <=90 90.0 35.2644 45.0 Calc	
Present Condition	
Double Miller Indices	
0.4082 0.4082 0.8165 -0.5774 -0.5774 0.5774	
DISP	1
Position 10 V Disp size 400 V Disp	
BG color Black Line size 2.0 Minus	
OK Return Structure	
Neurin Oudedare	ingew2section 0 90
	ψ2=0->90 sten=5.0
	90
· · · · · · · · · · · · · · · · · · ·	Φ
L	

Calc->Disp->Return Structure で Position が表示される。

8. 極点図の描画

Cubic, Tetragonal, Orthorhombicの描画に関し Cubicは、NewCubicCODispで行い、 Tetragonal, Orthorhombicは本ソフトウエアで行う。

8.1 Cubic

CrystalOrientationDisp 2.08ST[25/12/31] by CTR – □ ×				
File Help Symmetry Special Index				
Material				
Material Cubic Aluminum				
1.0 1.0 1.0 90.0 90.0 90.0				
Miller Indices				
(hkl)[uvw] 1 ~ 1 ~ 2 ~ Gala				
Euler Angle				
(p1 P p2) <=90 90.0 35.2644 45.0 Calc	;			
Present Condition Euler Angle Double Miller Indices DDDD				
Desition 10 Disp size 100 DISP				
POsition 10 V Disp size 400 V				
OK Return Structure				
roietigure				
FWHM 5 degree Polefigure 1 1 2 O Orthorhombic Disp				
0				

8.2 Tetragonal

CrystalOrientationDisp 2.08ST[25/12/31] by CTR	-		\times
Material Tetragonal (Li,La)TiO3			
Miller Tellere			
(hkl)[uvw] 1 × 1 × 2 × -1 × 1	~	Cal	c
Euler Angle (p1 P p2) <=90 90.0 54.7275 45.0		Ca	lc
Euler Angle Double Miller Indices			
DISP Position 10 BG color Black V Line size		DISP Minus	
OK Return Structure			
FWHM 5 degree Polefigure 1 1 2 O Orthorhomt	bic	Disp	

CrystalOrientationDisp 2.08ST[25/12/31] by CTR				
File Help Symmetry Special Index				
Material				
Material Tetragonal (Li,La)TiO3				
1.0 1.0 1.999 90.0 90.0 90.0				
Miller Indices				
$(hkl)[uvw] 0 \sim 0 \sim 1 \sim 1 \sim 0 \sim 0 \sim Calc$				
Euler Angle				
(p1 P p2) <=90 0.0 0.0 Calc				
Euler Angle Double Miller Indices				
Position 10 V Disp size 400 V Disp				
BG color Black ~ Line size 2.0 ~ Minus				
OK Return Structure				
FWHM 5 degree Polefigure 1 0 0 Orthorhombic Disp				

8.3 Orthorhombic

CrystalOrientationDisp 2.08ST[25/12/31] by CTR – \Box X			
Material			
Material Orthorhombic SeifertiteSiO2			
1.0 1.232 1.097 90.0 90.0 90.0			
Miller Indices			
(hkl)[uvw] 1 v 1 v 2 v -1 v 1 v Galc			
Euler Angle			
(p1 P p2) <=90 80.272 35.2417 50.9273 Calc			
Present Condition Euler Angle Double Miller Indices DISP			
Position 10 V Disp size 400 V DISP			
BG color Black v Line size 2.0 v Minus			
OK Return Structure Polefigure			

	CrystalOrientationDisp 2.08ST[25/12/31] by CTR		×		
F	ile Help Symmetry Special	Index				
	Material					
	Material Orthorhom	bic SeifertiteSiO2	10			
	Miller Indices					
	(hkl)[uvw] 0 ~ 0 ~	1 ~ 1 ~ 0	V 0 V Calc			
	Euler Angle					
	(p1 P p2) <=90 0.0	0.0	0.0 Cale	;		
	Present Condition Euler Angle					
	Double Miller Indices					
	DISP					
	Position 10 ~ BG color Black ~	Disp size 400 Line size 2.0) v DISP			
	OK	Return Struc	ture			
	FWHM 5 degree Pole	figure 100 Ort	horhombic Disp			
G:\CTR\work\N File Help View	lewCubicCODisp\ — 🗆 >	C:\CTR\work\NewCubi	icCODis — 🗆 🗙	File Help View	CubicCODi — E	×
	RD Max=131.45 {0,0,1} Max=10.0	RD	Max=131.27 {0,1,0; Min=0.0	RE	00 Max {1,0,0 Min:	≍131.27 =0.0
	130.0 129.0 128.0 127.0 127.0		131.0 130.0 129.0 128.0 127.0			131.0 130.0 129.0 128.0
	() ⁴¹ (125.0)				·····) =	127.0 126.0 125.0 124.0
	121.0 120.0 119.0 118.0		122.0 121.0 120.0 119.0 118.0			123.0 122.0 121.0 120.0
		13.0 94.0 3.4	117.0 116.0		-	119.0 118.0
LaboTex						
	RD	RD		RD	_	
	001 APF		010 APF		100 APF	Levels 138.9 129.6
		K	\sum			120.4 111.1 101.8
	Тр		TD	{	TD	83.3 64.8 55.5
	/	F	Y			46.3 37.0 27.8
					~ /	18.5 1.0 Min=0.000
	sio2	sio?		sio?		Max=148.025 2025/01/01

極点図表示に使用したデータは、

sio2

CTR¥work¥NewCubicCODispホルダに保存されます。 Calcで削除されます。

sio2

sio2

9. CrystalOrientationDispと連携

回転前の極点図と回転後の極点図比較

9.1 CrystalOrientationDispで確認

口	転	前
-	11	11.1

回転後

CrystalOrientationDisp 2.11S by CTR PDuser CTR CTR — X	M CrystalOrientationDisp 2.11S by CTR PDuser CTR CTR − □ ×
File Help Symmetry Special Index	File Help Symmetry Special Index
Material Material 1.0 1.0 1.0 90.0 90.0 90.0	Material Cubic A-Iron-Measure-IntegralData
Miller Indices (hkl)[uvw] 1 1 0 1 -1 2 Calc	Miller Indices (hkl)[uvw] 1 1 2 -1 1 0 > Calc
Euler Angle (p1 P p2) <=90	Euler Angle (p1 P p2) <=90 180.0 35.2644 45.0 Calc
Description Description Builder Miller Indices 0.7071 0.0 0.4082 -0.4082 0.8165 DISP Disp size 400 DISP BG color Black Line size 2.0 Minus	Present Condition Euler Angle 180.0 35.2644 Double Miller Indices 0.4082 0.8165 -0.7071 0.7071 DISP Position 10 Disp size 400 BG color Black Line size 2.0 Minus
OK Return Structure Polefigure FWHM 5 degree Polefigure 1,1,1 O Orthorhombic Disp Disp2 PFRotation	OK Return Structure Polefigure FWHM 5 degree Polefigure Disp PFRotation

Calc後Disp(回転前)とDisp2(回転後)

PoleFigureContourDisplayで表示しているため、DispとDisp2で表示切替

9.2 PFRotationで確認

回転前の極点図をPFRotationに渡す

Pre: M C:\CTR\work\NewC X	
File Help View	
Po	65 V DISP Minus
FWHM 5 degree Poletigure 1,1,1 O Ortho	orhombic Disp
Disp	2 PFRotation
TD 軸90度回転	
	X - 📓 CrystalOrientationDisp 2.11S by CTR PDuser CTR CTR
	File Help Symmetry Special Index Material Sp Material Cubic A-Iron-Measure-IntegralL 1.0 Sp Miller Indices (hkl)[uvw] Euler Angle (p1 P p2) <=90 54.7356 90.0
PFRotation 1.21 by CTR PDuser CTR CTR File Help Polefigure(Contour)	×
TVT2 files select	
Path: C:\CTR\work\NewCubicCODisp	
Rotation(-360 <= degrees <= 360) of vector machine axis Along RD(X) 1 v 0 2 v 90 3 v 0	4 0 toOrthorhombic Rotate PoleFigure
Check Previous Next 111_dsp_2.TXT	Alfa angle check
Save Save Ormalization O TXT(Pole) O ASC(Pole) O Ra	s(Pole) • TXT2(Pole) Save
•	PoleFigureStepChenger