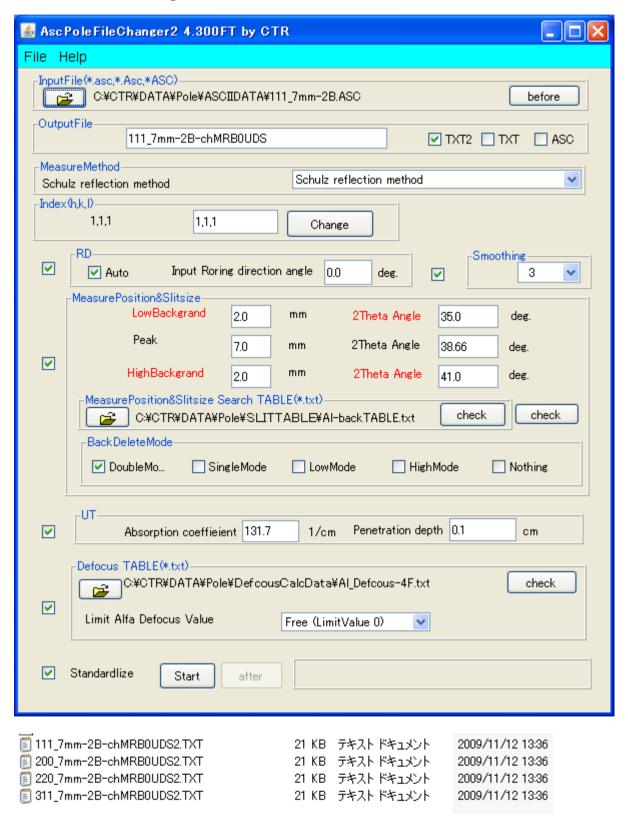
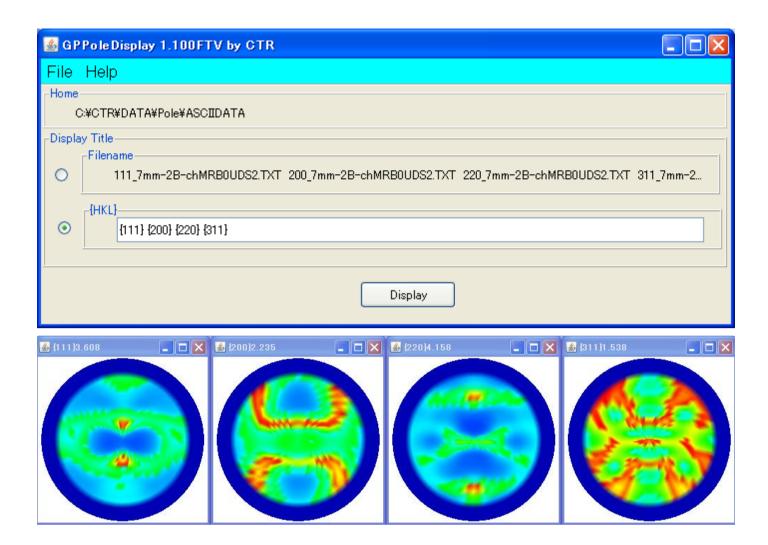
# 標準データによるpopLA評価

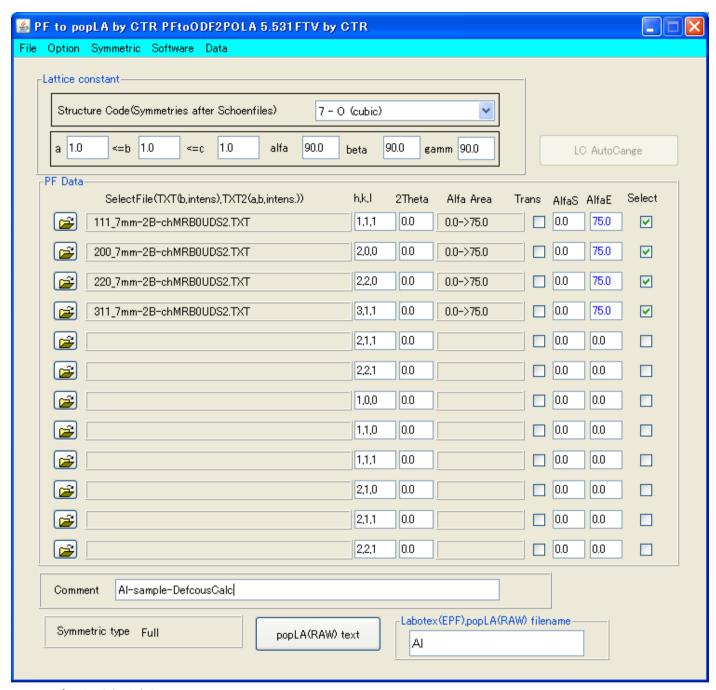

2009年11月12日 HelperTex


#### 入力データ

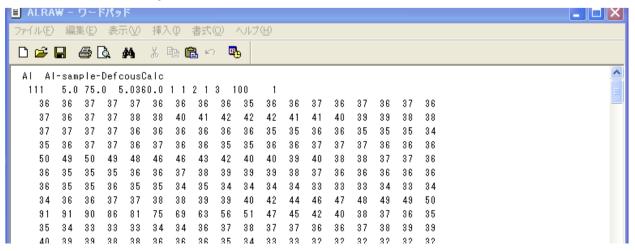
| ≈ 111_7mm-2B.ASC | 23 KB | RINT2000アスキー | 2008/10/23 9:32 |
|------------------|-------|--------------|-----------------|
| 200_7mm−2B.ASC   | 22 KB | RINT2000アスキー | 2008/10/23 9:32 |
| 220_7mm−2B.ASC   | 22 KB | RINT2000アスキー | 2008/10/23 9:32 |
| 311_7mm−2B.ASC   | 22 KB | RINT2000アスキー | 2008/10/23 9:32 |

#### 正極点データ処理

AscPoleFileChanger2ソフトウエアによりTXT2ファイルを作成







このTXT2データからpopLAの入力データであるRAWデータとDFBデータを作成する。 popLAでは、XRDで測定したデータを独自の方法でバックグランド除去、Defcous補正を 行なっている。しかしDefcous補正は光学系で異なる為、処理結果の規格化強度(RAW)と ダミーのDFBデータを作成する。

変換ソフトウエアはPFtoODF2POPLAとした。

PF t o ODF 2 ソフトウエアは、市販されているソフトウエアであい、その機能アップバージョンが PF t o ODF 2 ソフトウエアであるが、変換機能を p o p L A 単独としたのが PF t o ODF 2 PO P L A ソフトウエアである。



RAWデータが表示される。



| R] 111_7mm=2B.ASC         | 23 KB | RINT2000アスキー | 2008/10/23 9:32  |
|---------------------------|-------|--------------|------------------|
| ₹ 200_7mm-2B.ASC          | 22 KB | RINT2000アスキー | 2008/10/23 9:32  |
| 220_7mm-2B.ASC            | 22 KB | RINT2000アスキー | 2008/10/23 9:32  |
| 311_7mm-2B.ASC            | 22 KB | RINT2000アスキー | 2008/10/23 9:32  |
| 220_7mm-2B-chMRB0UDS2.TXT | 21 KB | テキスト ドキュメント  | 2009/11/12 13:36 |
| 311_7mm-2B-chMRB0UDS2.TXT | 21 KB | テキスト ドキュメント  | 2009/11/12 13:36 |
| 111_7mm-2B-chMRB0UDS2.TXT | 21 KB | テキスト ドキュメント  | 2009/11/12 13:55 |
| 200_7mm-2B-chMRB0UDS2.TXT | 21 KB | テキスト ドキュメント  | 2009/11/12 13:55 |
| ■ ALDFB                   | 1 KB  | DFB ファイル     | 2009/11/12 14:04 |
| ब्रो ALRAW                | 23 KB | 生データ         | 2009/11/12 14:04 |
| _                         |       |              |                  |

popLAはDOSモードで使うため、ファイル名の長さに注意

Windows-XPのDOSでは途中で動かなくなる。VISTAやWindows 7が良い

poplAはCドライブのXディレクトリで動作する為、上記A1. RAW to A1. DFBを コピーする。

Windows 7によるpopLA

```
Microsoft Windows [Version 6.1.7600]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.
C:¥Users¥yamada>cd c:¥x
c:¥X>tmpdos
```

tmpdosで画面が切り替わる。

popla. batの修正版を起動

popLAのスタート画面が表示される。

```
U.F. Kocks, J.S. Kallend, H.R. Wenk (May 1999)

0. QUIT

1. Get specimen DIRECTORY and VIEW a file

2. MASSAGE data files: correct,rotate,tilt,symmetrize,smooth,compare

3. WIMV: make spec.SOD; calculate PFs and inverse PFs; make matrices

4. HARMONIC analysis: COMPLETE rim (.FUL), get Roe Coeff.file (.HCF)

5. CONVERSIONS, permutations, transformations, paring

6. DISPLAYS and plots

7. Derive PROPERTIES from .SOD or .HCF files, make WEIGHTS file for simul.

8. DOS (temporary: type EXIT to return)

Please type a number from 0 to 8 -->
```

#### 2. MASSAGE dataの作成

(Page 2)画面

```
MASSAGE DATA FILES (mostly PFs) (popLA page 2)

0. Quit

1. Return to Page 1

2. "Make THEORETICAL defocussing & background file: .DFB (R. Bolmaro)"

3. DIGEST Raw Data (.RAW), with exper.or theor. .DFB: make .EPF

4. ROTATE PFs or adjust for grid offsets: make .RPF or .JWC

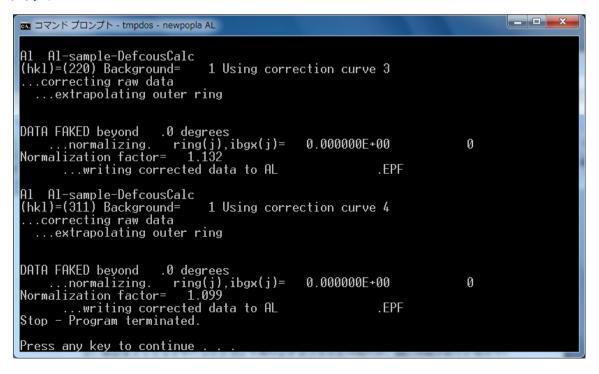
5. TILT PFs around right axis: make .TPF (T. Ozturk) [TO BE REPLACED]

6. SYMMETRIZE PFs: make .QPF or .SPF or .FPF

7." EXPAND PFs back to full circle (needed for WIMV & harm.): .FPF"

8. SMOOTH PFs or ODs with Gaussian Filter (quad, semi, or full): make .MPF

9. Take DIFFERENCE between 2 files (PFs or ODs): make .DIF


Please type a number from 0 to 9 ==>
```

- 2. はDefcousやバックグランド用のDFBファイル作成だが、既に作成されているので
- 3. RAWとDBFからEPFファイルを作成する。

Note: the sample is assumed to have rotated counter-clockwise Data will be sequenced clockwise in .EPF

Enter name of raw data file (ext .RAW assumed) AL Enter name of correction file (ext .DFB assumed)AL

入力で



### EPFファイルが作成される。(4極点図が3極点図になってしまう Maxは3極点)

| 名前     | ▼ サイズ | 種類               | 更新日時             |
|--------|-------|------------------|------------------|
| ₽ AL   | 23 KB | Exchange Certifi | 2009/11/12 14:28 |
| Al.DFB | 1 KB  | DFB ファイル         | 2009/11/12 14:04 |
| Al.RAW | 23 KB | RAW ファイル         | 2009/11/12 14:04 |

Page 1 に戻ってファイル内容比較

```
Volume in drive C is window7-32
Volume Serial Number is 308D-8899

Directory of c:\X

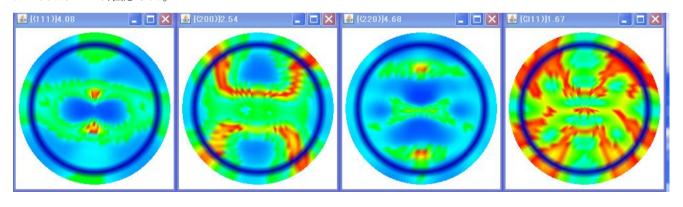
2009/11/12 14:04 815 Al.DFB
2009/11/12 14:28 23,476 AL.EPF
2009/11/12 14:04 23,104 Al.RAW
3 File(s) 47,395 bytes
0 Dir(s) 88,437,215,232 bytes free

For viewing:

Enter filename:
```

入力データRAWは

|    | IST          |      | 66   |                  |        | 1      | 1-12   | -:9    | 14:0             | 4 ♦    | AL.R   | AW |        |        |        |    |     |        |  |
|----|--------------|------|------|------------------|--------|--------|--------|--------|------------------|--------|--------|----|--------|--------|--------|----|-----|--------|--|
| Г  | 166          | 175  | 162  | 134              | 104    | 85     | 73     | 67     | 62               | 60     | 59     | 60 | 63     | 71     | 83     | 97 | 109 | 121    |  |
| П  | 0            | 0    | 0    | 0                | 0      | 0      | 0      | 0      | 0                | 0      | 0      | 0  | 0      | 0      | 0      | 0  | 0   | 0      |  |
| п  | 0            | 0    | 0    | 0                | 0      | 0      | 0      | 0      | 0                | 0      | 0      | 0  | 0      | 0      | 0      | 0  | 0   | 0      |  |
|    | 0            | 0    | 0    | 0                | 0      | 0      | 0      | 0      | 0                | 0      | 0      | 0  | 0      | 0      | 0      | 0  | 0   | 0      |  |
|    | 0            | 0    | 0    | 0                | 0      | 0      | 0      | 0      | 0                | 0<br>0 | 0      | 0  | 0      | 0<br>0 | 0      | 0  | 0   | 0      |  |
|    | O O          | 0    | 0    | 0<br>0           | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0           | 0      | 0<br>0 | 0  | 0<br>0 | 0      | 0<br>0 | 0  | 0   | 0<br>0 |  |
|    | a            | 0    | 0    | 0                | 0      | 0      | Ø      | Ø      | Ø                | Ø      | 0      | Ø  | 0      | 0      | Ø      | Ø  | Ø   | 0      |  |
| П  | ă            | ő    | ő    | ő                | ő      | Ő      | ő      | Ő      | ő                | ő      | ő      | ő  | ő      | Ő      | ő      | ő  | Ő   | ő      |  |
| ш  | 0000000      | ŏ    | ŏ    | ŏ                | ŏ      | ŏ      | ŏ      | ŏ      | ŏ                | ŏ      | ŏ      | ŏ  | ŏ      | ŏ      | ŏ      | ŏ  | ŏ   | ŏ      |  |
|    | ŏ            | ŏ    | ŏ    | ŏ                | ŏ      | ŏ      | ŏ      | ŏ      | ŏ                | ŏ      | ŏ      | ŏ  | ŏ      | ŏ      | ŏ      | ŏ  | ŏ   | ŏ      |  |
| ш  | Ø            | Ø    | Ø    | Ø                | Ø      | Ø      | Ø      | Ø      | Ø                | Ø      | Ø      | Ø  | Ø      | Ø      | Ø      | Ø  | 0   | Ø      |  |
| П  | 0            | 0    | 0    | 0                | 0      | 0      | 0      | 0      | 0                | 0      | 0      | 0  | 0      | 0      | 0      | 0  | 0   | 0      |  |
| A: | ı <u>0</u> 1 | -sam | nle- | -Def             | ousC   | alc    |        |        |                  |        |        |    |        |        |        |    |     |        |  |
|    | 200          | 5.0  | 75   | ดี               |        |        | 1.1    | 2 1    | 3 1              | 00     | - 1    |    |        |        |        |    |     |        |  |
| П  | 71           | - Ži | 72   | ~72 <sup>°</sup> | 72     | 72     | 71     | 70     | ~70 <sup>-</sup> | 70     | 70     | 71 | 73     | 74     | 75     | 74 | 75  | 74     |  |
|    | 75           | 73   | 73   | 73               | 74     | 75     | 78     | 79     | 79               | 79     | 80     | 79 | 78     | 77     | 76     | 76 | 76  | 76     |  |
|    | 76           | 76   | 76   | 75               | 73     | 72     | 73     | 73     | 73               | 74     | 73     | 74 | 72     | 72     | 70     | 71 | 71  | 71     |  |
|    | 71           | 71   | 71   | 71               | 71     | 72     | 72     | 72     | 70               | 70     | 71     | 72 | 71     | 70     | 70     | 70 | 71  | 71     |  |
|    | 73           | 72   | 74   | 72               | 73     | 72     | 72     | 70     | 70               | 70     | 71     | /1 | 72     | 71     | 73     | 72 | 72  | 70     |  |
|    | 70           | 70   | 72   | 71               | 72     | 73     | 75     | 77     | 79               | 78     | 78     | 11 | 7/     | 11     | 76     | 76 | 75  | 75     |  |
|    | 74           | 74   | 74   | 74               | 12     | 12     | 12     | 12     | 71               | 12     | 12     | 73 | 71     | 70     | 70     | 70 | 70  | 69     |  |


- $\{1\ 1\ 1\}$  の最後に0.0が並ぶ、これは $\alpha$ が75度以上のデータ(極点図の中心は0度)
- {200} の並びで75度が確認出来る。

| LIST 65                         | 11-1         | 2-:9 14:28 ♦ | AL.EPF               |                                         |  |
|---------------------------------|--------------|--------------|----------------------|-----------------------------------------|--|
| 99 97 95 89                     |              |              | 62 63 67             | 78 93 118 147 172                       |  |
| 180 163 133 106                 | 88 78 72     |              | 65 70 79             | 93 110 124 132 136 97                   |  |
| 0 0 0 0                         |              |              | 0 0 0                | 0 0 0 0 0                               |  |
| 0 0 0 0                         |              |              | 0 0 0                | 0 0 0 0                                 |  |
| 0 0 0 0                         |              |              | 0 0 0                | 0 0 0 0 0                               |  |
| 0 0 0 0                         | 0 0 0        |              | 0 0 0                | 0 0 0 0 0 0                             |  |
| 125 124 113 101                 | 87 75 67     |              | 66 72 80             | 93 116 149 178 192<br>90 99 106 107 108 |  |
| 180 152 121 95<br>107 103 97 89 |              |              | 66 71 79<br>64 66 74 | 90 99 104 107 108<br>87 107 133 158 175 |  |
| 107 103 97 89<br>174 152 124 99 |              |              | 64 66 74<br>65 71 80 | 92 106 117 123 126 97                   |  |
| 115 114 105 95                  |              |              | 65 70 79             | 93 116 148 176 187                      |  |
| 174 146 115 92                  |              |              | 67 73 83             | 97 107 113 116 117                      |  |
| 116 108 100 90                  |              |              | 67 71 80             | 96 121 149 170 178                      |  |
| 168 143 115 92                  |              |              | 66 72 81             | 91 103 110 115 117 97                   |  |
| 100 140 110 32                  | 12 11 01     | 00 04 04     | 00 12 01             | 71 100 110 110 117 77                   |  |
| Al Al-sample-Def                | cousCalc     | DFB=A1 A1-s  | :                    |                                         |  |
| (200) 5.0 75.0                  | 5.0360.0 1 1 |              | 1                    |                                         |  |
| 78 78 78 77                     | 77 77 78     |              | 77 79 79             | 79 78 78 78 78                          |  |
| 78 78 78 78                     | 77 79 79     |              | 80 80 80             | 79 80 82 83 83                          |  |
| 83 83 83 83                     | 83 84 86     | 87 88 87     | 87 87 86             | 82 81 80 80 80                          |  |
| 82 81 82 81                     | 82 81 80     |              | 77 77 78             | 79 79 79 79 78 81                       |  |
| 80 80 79 78                     | 79 78 78     |              | 75 75 75             | 75 74 74 75 75                          |  |
| <u>75</u> 757777                | 77 77 78     | 80 79 79     | 78 79 79             | 79 79 81 81 81                          |  |

{111}の80度から90度にデータが作成される。

この時、 $\alpha$ の測定領域は0->75であるが、popLAは80度以降のデータを作成する。? EPFデータをpopLADatatoTXT2ソフトウエアで確認する。

WindowsXPで確認した。



```
WIMV Analysis

0. Quit

1. Return to Page 1
WIMV: make .SOD and recalc. pole figures .WPF -- for:
2. cubic, tetra-,hexagonal crystals; sample diad: up to 3 PFs, 13 poles
3. trigonal cry.,gen'l.sample sym.,or higher: up to 7 PFs, 25 poles
4. orthorhombic crystals; gen'l.sample sym.: up to 7 PFs, 25 poles
Recalculate POLE FIGURES (even non-measured ones): make .APF -
5. using .WIM matrix for the desired PFs (up to 3, 13 poles)
6. using .BWM or .WM3 matrix for the desired PFs (up to 7, 25 poles)
7. Calculate INVERSE pole figures from .SOD: .WIP
   (So far assumes tetragonal crystal symmetry)
8. Make WIMV pointer matrix for new crystal structure and set of PFs
9. Make WIMV pointer matrix for any INVERSE pole figures: make .WMI
Please type a number from 0 to 9 -->
```

## 8. MIMV用 pointer matrix

AL.WIN を作成

2. でODF解析

```
WIMV: make .SOD and recalc. pole figures .WPF -- for:
2. cubic, tetra-,hexagonal crystals; sample diad: up to 3 PFs, 13 poles
3. trigonal cry.,gen'l.sample sym.,or higher: up to 7 PFs, 25 poles
4. orthorhombic crystals; gen'l.sample sym.: up to 7 PFs, 25 poles
```

```
_ _ _ X
📷 コマンド プロンプト - tmpdos - newpopla al
 Directory of c:\x
2009/11/12
              15:38
                                   9,300 AL.WIM
                                   6,448 BCC2.WIM
4,892 BERYL.WIM
2009/09/25
             13:39
2009/09/25
              13:39
                                   8,458 C112.WIM
9,300 CUBIC.WIM
2009/09/25
              13:39
2009/09/25
              13:39
                                   4,892 TITAN.WIM
4,890 ZIRCON.WIM
2009/09/25
              13:39
2009/09/25
              13:40
                                      48,180 bytes
                  7 File(s)
                 0 Dir(s) 88,377,569,280 bytes free
ODF ANALYSIS - WIMV ALGORITHM
COPYRIGHT (C) 1987,1988 JOHN S. KALLEND
       *** Version September 1993 ***
Enter the name of the wimv matrix (?.WIM)
[Default is CUBIC] ==> AL
Name of data file (default extension .epf): AL
```

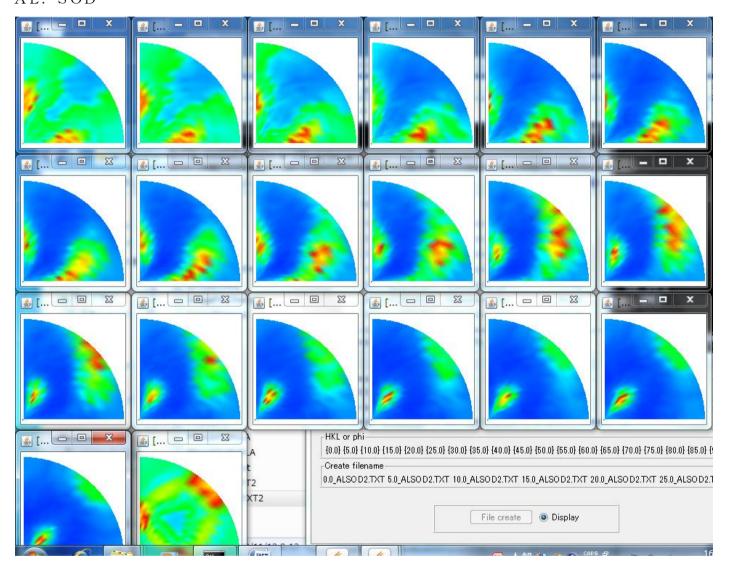
AL. WIMを入力(ALだけ)

AL. EPFを入力(ALだけ)

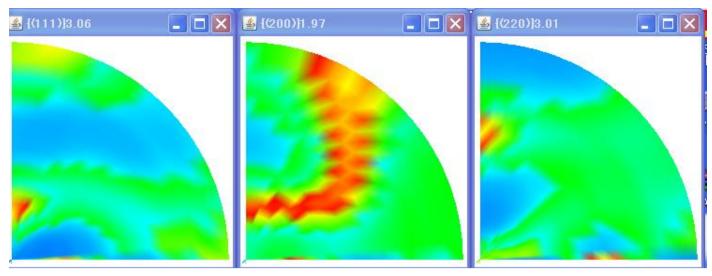
```
Sample Symmetry is:

0. Orthorhombic
1. Diad on Z

Enter 0 or 1 ==> 0


Al Al-sample-DefcousCalc
111    5.0 75.0    5.0360.0    1    2-1    3    100         1
200    5.0 75.0    5.0360.0    1    2-1    3    100         1
220    5.0 75.0    5.0360.0    1    2-1    3    100         1
Che minimum pole figure intensity is         .31
Co you wish to raise the Fon? N
```

ODFが走る。


```
- - X
■ コマンド プロンプト - tmpdos - newpopla al
Iteration 2 in progress
Sharpening may cause larger error in iteration 3
Texture Strength (m.r.d.): 1.2
(= square-root of "Texture Index")
Iteration 2 estimated OD error (%) = 19.1
Iteration 3 in progress
Texture Strength (m.r.d.): 1.3
Iteration 3 estimated OD error (%) =
                                                            7.8
Iteration 4 in progress
Texture Strength (m.r.d.): 1.3
Iteration 4 estimated OD error (%) =
 Texture Strength (m.r.d.):
                                                            4.8
Iteration 5 in progress
 Texture Strength (m.r.d.): 1.4
Iteration 5 estimated OD error (%) =
Iteration 6 in progress
Texture Strength (m.r.d.):
Iteration 6 estimated OD error (%) =
                                                            2.7
Continue? Y
```

```
Continue? n
Normalization factor: 1.10
In output file, angles increase from 0 in nomenclature of 1. Kocks (need this one for WEIGHTS) 2. Roe/Matthies 3. Bunge (rotates plot +90 deg.)
Enter 1,2, or 3 ==> 3
```

ODFファイルAL. SODと再計算極点図AL. WPF が計算される。 poplaDatatoTXT2ソフトウエアで確認 AL. SOD



AL. WPF

