鉄系材料の結晶方位解析

2017年07月18日 HelperTex Office 山田義行

結晶による回折現象

ブラッグの公式 2d sin θ = n λ

 $1/d^2 = (h^2 + k^2 + l^2)/a^2(Al : a = 4.0494 \text{ Å})$

Moターゲット:λ=0. 70930Å Cuターゲット:λ=1. 54056Å Coターゲット:λ=1. 78897Å

波長が一定なら、のが小さいとdは大きくなる。

(hkl)	I(f)	d(Å)	28 (Mo)	28 (Cu)	2 <i>θ</i> (Co)
(111)	100.0	2,338	17.450	38.472	44,988
(200)	47.0	2 0 2 4	20183	44 738	52 455
(220)	22.0	1 431	28 699	65133	77 376
(311)	24.0	1 221	33 771	72 227	94 207
(222)	70	1169	35 321	82 435	99.844
(400)	20	1 012	41 012	41 012	124142
(331)	80	0.929	44 890	44 890	148 710
(420)	80	0.906	46116	46116	162108
(422)	8.0	0.627	50.814	30.814	

圧延板 {HKL}<UVW> (hkl)[uvw]

Cube

Brass

Random試料と配向試料のプロファイル

配向評価として、集合組織評価(逆極点、極点、ODF解析)

集合組織の表現

逆極点図(θ/θscanによるプロファイル測定とODF解析結果から) 結晶座標系を基準で材料方位の分布を表現 <hkl> 正極点図(極点測定、ODF解析結果から)

材料座標系(ND-RD)を基準で結晶方位の分布を表現

極点図

{hkl}<uvw>

ODF(複数の極点図から解析)

結晶方位の分布

{hkl}<uvw>

ODF図

Θ / θ プロファイルから逆極点(random試料との強度比率)

アルミニウム(合金状態と圧延が異なる)

プロファイルの違いを相互相関係数を計算するClusterソフトウエアで解析

InverseAllソフトウェアでrandom試料との強度比計算

🍰 Text Di	splay 1.10S								
File Help									
Randomm	ode Standard	ization Integra	ition						
	[111]	[200]	[220]	[311]	[222]	[400]	[331]	[420]	[422]
A-H18	0.435	1.053	1.446	2.532	0.234	0.811	0.519	0.965	1.65
A-T4	0.356	3.261	0.468	0.643	0.188	4.457	0.48	0.836	0.162
B-H18	0.52	0.968	1.942	1.545	0.572	0.781	1.289	1.1	1.321
B-O	0.5	2.535	0.589	0.879	0.512	3.445	0.592	0.768	0.811
C-Bach	0.111	2.835	1.427	0.953	0.0070	3.455	0.562	0.891	0.9
C-CAL	0.458	2.648	0.962	0.695	0.456	2.987	0.568	0.832	0.491
D-H14	0.184	1.438	1.489	2.911	0.014	1.428	0.43	1.303	0.99
D-H18	0.173	0.715	2.325	3.48	0.068	0.32	0.258	0.791	1.456
D-0	0.0040	3.922	0.594	0.752	-0.0090	4.753	0.23	0.587	0.485

	A	В	С	D	E	F	G	Н	I	J
1	Randommo	de Standard	lization Inte	gratio n						
2		[111]	[200]	[220]	[311]	[222]	[400]	[331]	[420]	[422]
3	A-H18	0.435	1.053	1.446	2.532	0.234	0.811	0.519	0.965	1.65
4	A-T4	0.356	3.261	0.468	0.643	0.188	4.457	0.48	0.836	0.162
5	B-H18	0.52	0.968	1.942	1.545	0.572	0.781	1.289	1.1	1.321
6	B-0	0.5	2.535	0.589	0.879	0.512	3.445	0.592	0.768	0.811
7	C-Bach	0.111	2.835	1.427	0.953	0.007	3.455	0.562	0.891	0.9
8	C-CAL	0.458	2.648	0.962	0.695	0.456	2.987	0.568	0.832	0.491
9	D-H1 4	0.184	1.438	1.489	2.911	0.014	1.428	0.43	1.303	0.99
10	D-H18	0.173	0.715	2.325	3.48	0.068	0.32	0.258	0.791	1.456
11	D-O	0.004	3.922	0.594	0.752	-0.009	4.753	0.23	0.587	0.485

ProfiletoDivisionProfileソフトウェアで分割データ

X線回折で得られる情報

バックグランドは実測値(計算は出来ません)、randomはODF解析による計算値

極点測定からODF

逆極点図から結晶方位を求める

手引きの極点図をピーク角度から{hkl}<uvw>の決定

≜ {1,0,0}8.82	({1,1,0]8.68		1		面間隔。	d_1 の面 $(h_1k_1l_1)$	と、面間隔 d_2 の面 $(h_2k_2l_2)$
					NDからの角 {100}極点図 {110}極点図 {111}極点図 {111}極点図 RDからの角 Wulffnetな {100}極点図 {110}極点図	度]、45度]、0,60度]、35度 度 に):β=0.1]、該当な]、90,30度	ュ 80,90,270 しヽ E	泣 方:cos φ=)上	$-\frac{h_1h_2+k_1k_2+l_1l_2}{\sqrt{(h_1^2+k_1^2+l_1^2)(h_2^2+k_2^2+l_2^2)}}$
≝ PoleHKLUV File Help Si	Wsearch 2.03 mulation Abs	ST[14/03/31	l]by CTR		{111}極点区	」、該当な	し		
-Material select Cub -TXT2(*2:TXT;*	iC TXT) files select Holder C:\tmp\br	ass ,	×		$(h_2 k_2 l_2)$	100	110	111	
FileName 100 chS 2.	TXT 110 chS	3 2.TXT 111	chS 2.TXT		100	0			
🕌 TextDis	splay 1.11S C	¥CTR¥work¥	PoleHKLUVWSear	ch¥PEAK.TXT	N. e.	90			
1,0,0	aangle	bangle	Polelevel		110	45 90	60	43 -	
- [↑] 0 1 2 3	45.0 45.0 45.0 45.0	55.0 125.0 235.0 305.0	8.81 8.81 8.81 8.81		111 V ~~	54.7	90 35.3 90	0 70.5 109.5	
1,1,0 0 1 2	aangie 90.0 30.0 30.0	bangie 0.0 0.0 70.0	Polelevel 8.68 7.28 3.64		210	26.6 63.4 90	18.4 50.8 71.6	39.2 75.0	
3 4 5 6	30.0 30.0 30.0 30.0	110.0 180.0 250.0 290.0	3.64 7.28 3.64 3.64	PoleHKLUVWSearch.jar	211	35.3 65.9	30. 54.7 73.2- 90	19.5 61.9 90	
1,1,1 0 1 2 3	aangle 55.0 55.0 55.0 55.0	bangle 35.0 145.0 215.0 325.0	Polelevel 9.15 9.15 9.15 9.15		221	48.2 70.5	19.5 45 76.4 90	15.8 54.7 78.9	

{110} <-112>が決まる

ODF図から結晶方位を求める

$$\begin{split} h &= n \sin \Phi \sin \varphi_2 \\ k &= n \sin \Phi \cos \varphi_2 \\ l &= n \cos \Phi \\ u &= n'(\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2 \cos \Phi) \\ v &= n'(-\cos \varphi_1 \sin \varphi_2 - \sin \varphi_1 \cos \varphi_2 \cos \Phi) \\ w &= n' \sin \varphi_1 \sin \Phi \end{split}$$

CrystalOrie	ntationDisp 2.04MT[17/10/31] by CTR – 🗖
ile Help Symmetr	ry Special Index
Material —	
Material	Cubic Copper
	1.0 1.0 1.0 90.0 90.0 90.0
Miller Indices	
(hkl)[uvw] 1	▼ 1 ▼ 0 ▼ 1 ▼ -1 ▼ 2 ▼ Calc
Euler Angle	
(p1 P p2) <=90	54.7356 90.0 45.0 Calc
Present Condition	
Euler Angle	
54.735	6 90.0 45.0
Double Miller Indice	es
0,7071	0 7071 0 0 0 4082 -0 4082 0 8165

測定

測定方法は材料の粒径に依存します。粒径が小さければ、どのような測定方法でも測定結果は一致します。 配向が小さい場合、十分な強度を得られる測定方法が有利になります。

X線回折測定では、回折に関係しない散乱(バックグランド)が測定される。バックグランド測定が重要になる。 測定される回折強度は、試料の吸収や、光学系のズレに影響される。

一般的な測定(Schulzの反射法、疑似集中法(RSが広い))

Schulzスリットで照射X線を制限、極点図が広い(75度)、粗大結晶粒に対応(揺動) 透過測定(Deckerの透過法、平行ビーム(DSスリットO. 1mm),RSは広い)

極点図の外周部分の測定、測定領域が(90-0-b)、粗大結晶粒に対応(材料の厚さ) 高分子材料など、

1D検出器

シンチレーションカンンタと同様の使い方なので、一般的な測定が可能以下は極点測定としては問題があります。十分な評価を行って下さい。

2D検出器(Point光学系)

微小領域測定(粗大結晶粒には不向き)

高速測定が可能

測定される極点図が狭い

大量の測定データ

近接する領域の差異評価

入射平行ビームによる極点測定

照射エリアが狭くなり、粒径の影響を受けやすい。

point照射と2D検出器組み合わせで利用

受光側に平行スリット

残留応力を含む試料測定には不向き defocus補正量が大きい

極点処理(ODFPoleFigure)

平滑化

粒径が粗い、照射エリアが狭いなど、データの凸凹の平滑化 粒径が粗い場合、LaboTexなどのADC法では必須 ODDF解析結果の平滑化も可能

RD補正

極点図の真上が圧延方向と一致するように回転する 極点図の非対称性を考慮

バックグランド削除

非干渉性散乱、蛍光、非晶質などの測定データ削除 通常、測定20角度±3degを測定 バックグランドの形状を確認し、修正も必要 バックグランドは実測値でなければ計算出来ません。

吸収補正

回折が発生する体積の変化に対する補正

試料が薄い場合、補正が必要

Defocus補正

受光スリット部における試料を煽った測定による回折線の広がり補正

規格化

random試料による強度補正であるが

試料により、全回折量が異なるケースもあるので、

1)random規格化

2)random補正十内部規格化

では2)を勧めます。

対称操作(PFtoODF3)

1/4, 1/2(左右対称), Fiber(β方向平均)操作を行います。

実際の処理はCTR/説明書/Soft/DOC2/「Fe試料によるLaboTex,StandardODF解析比較」を参照してください。

平滑化

粒径が粗い場合、平滑化で本来の情報が得られます。

バックグランド(ODFPoleFigure)

Excelでバックグランド修正 (PoleBackgroundEditor) PoleBackgroundEditor.jar

PoleBackgroundEditor 1.03T[17/10/31] by CTR	– 🗆 🗙		A	D	0	D	E	E	C .		т	
File Help Excel		1	A 0	1969	5256			F	G		1	U
L_450-(400)		2	1	9300	3600	6000						
Inputrile(ASC)		2	2	2240	2602	_						
200.ASC		4	2	3240	2002	5000	<u> </u>					
		4	3	0700	2934		Ν					
		D	4	2700	2592	4000						
Editor		6	5	3006	2808		1					
		7 6 3564 2772							▲ 丞石11			
r Peakdata		8	7	3870	3042	3000						
		9	8	3582	3330							系列2
Magnification (X) 1.0 BackgroudPlus		10	9	3672	2970	2000						
		11	10	3852	3024							
Create AscFile		12	11	3942	3600	1000						
	Overte	13	12	3798	3420	1000						
CIFOTREDATARO DE FOIEFIgure 2 # 2001_ChorkB.A30	Oreate	14	13	3600	3096							
		15	14	3888	3420	0	-	-				
		16	15	3834	3852		0	5	10	15	20	
									1			1

吸収補正

X線回折は試料体積に影響を受けます。

試料が薄いと、体積が減少し、回折線に寄与する体積が減少し、回折線が減少します。 極点測定の様に試料を傾けて測定すると、回折に寄与する体積が変化しています。

この体積変化を補正します。

透過法(Decker法)

反射法(Schulz法)

文献よりアルミニウムμtを求める 質量吸収係数μ/ρ(cm²/g) CuKα = 48.6 密度(g/cm³) 2.71 μt=131.7

Io sample

Io s Si

μtによる補正量

I= Ioe^{−ut}

μt=1では吸収補正は不要

試料を傾けるとプロファイルが広がる(Defocus)

無配向試料の極点測定データのβ方向の平均値をα軸でプロット、極点図の地位心を0.0、極点図の外側で徐々に強度が低下 Defocus曲線は、測定20角度、受光スリット幅に影響されます。

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (Received 16 January 1970; in final form 3 April 1970)

ODFソフトウエアの特徴

	StandardODF	popLA	LaboTex	TexTools
メーカ	府立大井上先生	Los Alamos	LaboSoft	ResMat
解析法	級数展開法	WIMV,級数展開法	ADC	ADC
Windows	XPからWin7まで	DOS	XPからWin7まで	XPからWin7まで
極点図	中心から	中心から80度まで	制限なし	制限なし
Cubic	0	0	0	0
Hexagonal	<u> </u>	0	0	0
Trigonal	_	0	0	0
Orthorhombic	_	0	0	0
Other	_	<u> </u>	0	0
非対称解析	Orthorombic(1/4)	Monoclinic(ミラー)	Triclinic	Triclinic
RD-TD(極点図)	_	-	CW(TDが右)	CCW(TDが左)
ODF図	0	<u> </u>	0	0
再計算極点図	0	<u> </u>	0	0
逆極点図	0	<u> </u>	0	0
cursor強度、方位	_	<u> </u>	0	0
VolumeFraction(Integral)	_	<u> </u>	0	0
VolumeFraction (Model Fanction)	-	<u> </u>	0	-
その他	r値面内異方性評価		Project	結晶方位図とODFが連携
	ソフトウエアと連携		VolumeFractionからODF	

入力データが同じでも、計算ODFは解析方法やソフトウエアで異なります。 方位位置は同じであるが、各方位の密度が異なる傾向があります。 級数展開法<ADC,WIMV

> WIMV method: Williams method ,Imhof methodをmatthiesとVinelが結合 ADC method : Arbitrarily Defined Cells