最新のXRD極点のデータ処理

2019年09月10日 *HelperTex Office* 概要

ValueODFVFソフトウエアの再defocus機能の有効性から、XRD極点処理の 流れが変わります。極点処理では出来るだけErrorを少なく補正を行い、ODF解析後でも Error評価を行い、材料の正確な方位解析を行います。

Errorは、光学系のErrorの事で、最適化により軽減されます。

結晶系により2つの流れがあります。

最初にCubicを説明し、次にHexagonalで説明します。

1. Cubicの場合

1) バックグランドは出来るだけ平滑化する。凸凹しているとFiberが出現します。

BGMode Measure(Calc)
Measure
Straight(Option)
Defocus(Option)
Measure(Calc)
H Minimum ►
, All background ►
7
ODFPoleFigure2 3.90T[19/10/31] by CTR ODFPoleFigure2 3.90T[19/10/31] by CTR
ASC(RINT-PC) V III ASC 200 ASC 220 ASC
Calcration Condition
Previous Next C#CTR#DATA#Aluminum-H=O#Aluminum-H#111.ASC 1,1,1 Change
Backgroud delete mode
© DoubleMode () SingleMode () LowMode () HighMode () Nothing BG detocus DSH12mm+Schul2+NSHomm () Minimum mo □ □ □ + 0 3 ∨ Arithmetic mean ∨ Disp
Peak slit 7.0 mm PC Slat 7.0 mm V Peak Slit / BGS_BG Scope 90.0 kg 90.0 dor Stat Dire with his
Ref Trans Schulz reflection method v Change Absorption coefficien 133.0 1/cm Thickness 0.2 cm v Set 2Theta 38.5 deg. () 1/kt Profile
Defocus file Select Trasmission defocus HKL+T
Operations file C#CTR#DATA#AI-powder-random#defocus#DEFOCUS_F.TXT
Make defocus function files by TXT2 Files V 🗌 Normalization 🚔
Cherobus(s) function files folder(Calc undeckderocus)
Defocus 2) function files folder(Calc backdefocus) LINE-BB-185mm ✓ Search minimum EqualAngleRp%(Cubic only) ● 1/Ra Profile
Smoothing for ADC
Cycles 5 V Weight 8 V Disp
After connection
Filemake surgess II Soloct cruttel: Cubic 19/09/11
Select Ustal. Cubic 1970711
2) defocus補正は測定データを用いる(スリット条件は合わせる)
r a n d o m 試料が入手出来ない場合、計算補正を用いる。
3) 再defocus補正を用いる。
4)計算を開始
5) Rp%プロファイルの確認

R p %プロファイルの右側で±1.5%をはみ出る場合、測定に問題があります。 光学系、測定幅など検討してください。

Cubic以外、例えばHexagonalでrandom試料が入手出来ない場合 1) バックグランドは出来るだけ平滑化する。

2.1 LaboTexに読み込ませ、ODFを計算

Rp%が大きい場合、極点図をExportしValueODFVFで確認

PF Export	as Text file	X
Job No : Sample : Select Data to Export :	Job01 Ti-R	
Ti-R - CPF - 002 Ti-R - CPF - 101 Ti-R - CPF - 102 Ti-R - CPF - 103 Ti-R - NPF - 103 Ti-R - NPF - 101 Ti-R - NPF - 102 Ti-R - NPF - 103 Ti-R - RPF - 103 Ti-R - RPF - 101 Ti-R - RPF - 103 Ti-R - RPF - 103 Ti-R - RPF - 103		^
Ti-R - INV - 010 Ti-R - INV - 001		~
OK	Cancel	

ValueODFVFで確認

この部分に問題があります。

再defcous処理を行う。

ODF入力データのTXT2を選択

この極点図を再度LaboTexに読み込ませる。

Rp%が改善されます。

今回はLaboTexを使用しましたが、他のODFソフトウエアでも同様に扱えます。 極点図をExportして確認

R p %プロファイルの右側が基準内に入ります。

右側では、{101} 極点図が中心で大きくはみ出していますが、randomレベルの違いで 問題ありません。 あるいは、等角度評価から等面積評価に変えてみます。

24			ValueODF	VF 2.29T[19/10/31] by	CTR
File Help Resolusion	:5.0	EqualAngle	TextDisplay	FolderDisp	Polefiguredisp	Titanium LABOTEX
Normalized Pole figure		to Equa	alErea Sin(Alf	fa)		
Recalculated Pole figure	i					
Rp%						

24				Value	ODFVF	2.29	T[19/	/10/3	1] b	y CTR –	×
File Help Resolusio	n:5.0	Equal	Erea S	Sin(Alfa)	TextDis	splay	Folde	rDisp	Pole	figuredisp Titanium LABOTEX	
Normalized Polefigure	2	101	102	103						C:¥CTR¥DATA¥Ti-R¥LaboTex¥CW¥calcdefocu	s¥Newda
Recalculated Polefigure	2	101	102	103						Ti-R-redef-pole.TPF	
Rp%	0.3	13.3	7.8	2.5						Average= 5.9 %	
3.0_%										19/	09/11
1.5											
			>								
0.0											
									_		
									~		
-1.5											
-3.0											
U						P	vpna(C	ieg.)			90

2. 2 TexTolsの場合

作成したODFファイルにRp%が書き出されています。

目標 1%が16.4%に計算されています。

再計算極点図を作成しValueODFVFで確認

当面積で表示

再defocus処理を行い、再度TexToolsに読み込む

再defocus 極点図を解析

2. 3 MTEXの場合

>> odf=calcODF(pf)
0 | 0.98 0.56 0.69 0.74
1 | 0.54 0.50 0.39 0.27
2 | 0.28 0.41 0.35 0.23
3 | 0.19 0.35 0.32 0.20
4 | 0.15 0.36 0.30 0.17
5 | 0.14 0.33 0.30 0.17
6 | 0.12 0.34 0.29 0.16

再defocus処理

MTEXで処理できるファイルを作成し、再度ODF解析を行う。

>> odf	=calc0	DF(pf)			
0	0.95	0.45	0.51	0.64	
1	0.50	0.31	0.27	0.22	
2	0.26	0.23	0.18	0.17	
3	0.18	0.15	0.13	0.13	
4	0.13	0.16	0.13	0.12	
5	0.13	0.12	0.11	0.12	
6	0.11	0.13	0.11	0.11	

改善されています

問題もありますが、改善されます。

このように常にRp%プロファイルを確認してください。