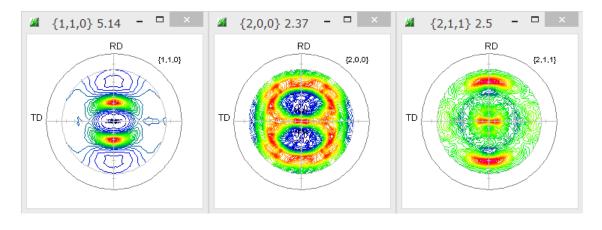

VolumeFraction 機能を持たない ODF の方位順位決め (Fe)


測定データ $(\alpha - Fe)$

正極点データ処理 (バックグランド除去、defocus補正)

1/4対称操作

2019年07月01日 HelperTex Office 材料の配向は極点図測定で比較できるが、方位 $\{h\ k\ l\ \} < u\ v\ w> の定量、順位はODF解析後に VolumeFraction 計算を行うと計算できます。$

しかし、VolumeFraction 計算できる ODF 解析ソフトウエアは少ないので、

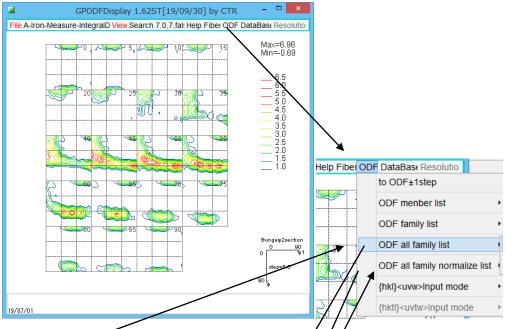
ODF図から求める方位密度では、各方位に係数を付けて評価します。

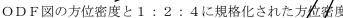
例えば、cube, copper, S方位が同程度含まれている場合、<math>4:2:1 の割合に解析される事が知られています(以下の文献)。よって、ODF図は係数1:2:4 で評価します。

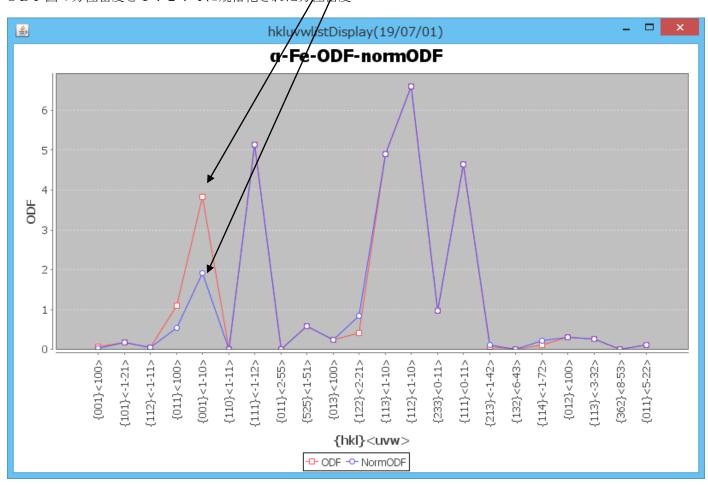
本資料では、VolumeFraction機能付属が属しないODF-Bの結果の係数付きODF図評価と計算されたODF図をLaboTexでVolumeFraction計算を行い比較してみます。

METALLURGICAL AND MATERIALS TRANSACTIONS A

1078-VOLUME 35A, MARCH 2004

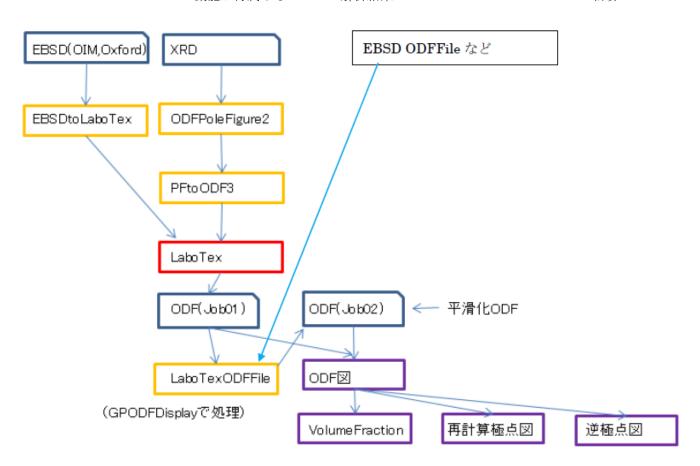

Determination of Volume Fractions of Texture Components with Standard Distributions in Euler Space


JAE-HYUNG CHO, A.D. ROLLETT, and K.H. OH


Table I. Standard Texture of Spherical Components with Gaussian Distribution (b = 12.5 Deg) and Its Multiplicity (Cubic/Orthorhombic) in the $90 \times 90 \times 90$ Deg Region

Miller Index	Euler .	ODF (Maximum	Multiplicity		
$\{hkl\} < uvw >$	$\{\varphi_1, \Phi, \varphi_2\}$	$\{\alpha, \beta, \gamma\}$	at Exact Position)	(m)	
Bs, {110}<112>	{35.26 deg, 45 deg, 0 deg}	{54.74 deg, 45 deg, 0 deg}	130.95	2	
Copper, {112}<111>	{90 deg, 35.26 deg, 45 deg}	{0 deg, 35.26 deg, 45 deg}	130.95	2	
S {123}<634>	{58.98 deg, 36.7 deg, 63.44 deg}	{31.02 deg, 36.7 deg, 26.57 deg}	56.89	1	
Goss, {110}<001>	{0 deg, 45 deg, 0 deg}	{90 deg, 45 deg, 0 deg}	262.22	4	
Cube, {001}<100>	$\{\varphi_1 + \varphi_2 = 0 \text{ deg}, 90 \text{ deg},$	$\{\alpha + \gamma = 0 \text{ deg}, 90 \text{ deg},$	262.22	4	
	$180 \text{ deg}, \Phi = 0 \text{ deg}$	$180 \deg, \beta = 0 \deg$			
Rotated cube,	$\{\varphi_1 + \varphi_2 = 45 \text{ deg},$	$\{\alpha + \gamma = 45 \text{ deg},$	262.22	4	
{001}<110>	$135 \deg, \Phi = 0 \deg$	135 deg, $\beta = 0 \text{ deg}$			
Rotated Goss,	{90 deg, 45 deg, 0 deg}	{0 deg, 45 deg, 0 deg}	262.22	4	
{110}<011>					
{1Ì1}<'112>	{90 deg, 54.75 deg, 45 deg}	{0 deg, 54.74 deg, 45 deg}	130.95	2	
{112}<110>	{0 deg, 35.26 deg, 45 deg}	{90 deg, 35.26 deg, 45 deg}	130.95	2	

$\alpha - F e O O D F 解析結果$

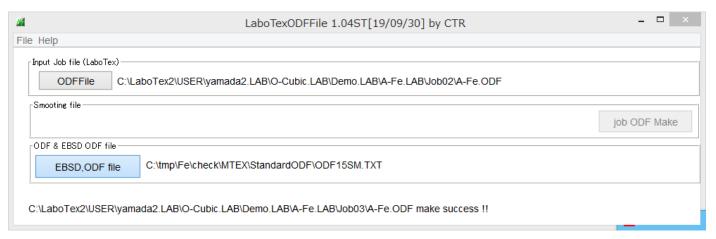


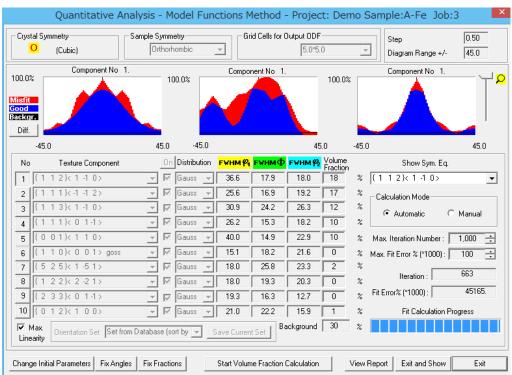
青のプロファイルが 1:2:4 の係数計算(1:2:4 一 > 0. 5:1:2 で表現) 方位密度順位

 $\{112\}<1-10>,\{111\}<-1-12>,\{113\}<1-10>,\{111\}<0-11>,\{001\},1-10>$ 順位は変わらないが、 $\{111\}<-1-12>,\{113\}<1-10>,\{111\}<0-11>はほぼ同一の方位密度で <math>\{001\}<1-10>$ の方位密度が低下します。

```
{hkl}<uvw>,ODF
{001}<100>,0.06
{101}<-1-21>,0.17
                                            norm{hkl}<uvw>,normODF
                                             {001}<100>,0.03
                                             {101}<-1-21>,0.17
[112]<-1-11>,0.04
                                             (112)<-1-11>,0.04
{011}<100>,1.1
                                             (011)<100>,0.55
{001}<1-10>,3.83
                                             {001}<1-10>,1.915
{110}<1-11>,0.0
[110]<1-11>,0.0
                                             {111}<-1-12>,5.13
{011}<2-55>,0.0
{525}<1-51>,0.58
{111}<-1-12>,5.13
011}<2-55>,0.0
525}<1-51>,0.58
013\<100>,0.23
                                             [013]<100>,0.23
[122]<2-21>,0.42
                                             {122}<2-21>,0.84
{113}<1-10>,4.91
[113}<1-10>,4.91
[112}<1-10>,6.6
                                             [112]<1-10>,6.6
[233]<0-11>,0.98
[111]<0-11>,4.64
[213]<-1-42>,0.06
                                             [233]<0-11>,0.98
                                             {111}<0-11>,4.64
                                             [213]<-1-42>,0.12
[132]<6-43>,0.0
                                             [132]<6-43>,0.0
                                             (114)<-1-72>,0.22
(012)<100>,0.3
(113)<-3-32>,0.25
(362)<8-53>,0.0
{114}<-1-72>,0.11
{012}<100>,0.3
{113}<-3-32>,0.25
{362}<8-53>,0.0
{011}<5-22>,0.12
                                             {011}<5-22>,0.12
```

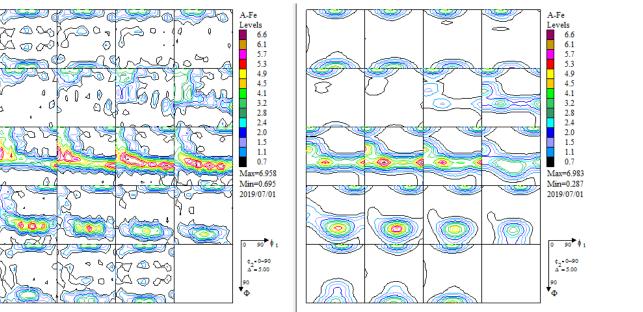
VolumeFraction機能が付属しないODF解析結果のVolumeFraction計算


LaboTexODFFile ソフトウエアは、LaboTex の ODF 解析結果の平滑化が目的で作成され、

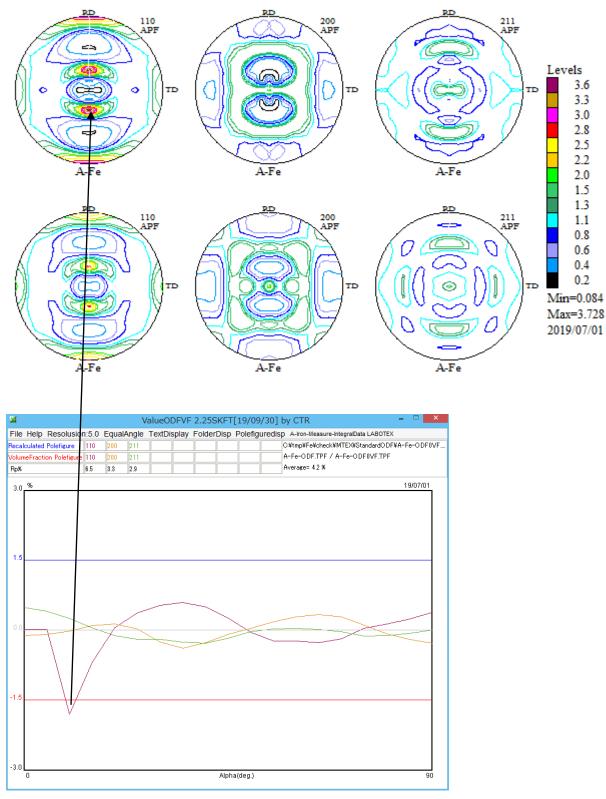

ODF図データを外部に Export(LaboTexODFFile)し、GPODFDisplay で平滑化を行い、LaboTex に Import(LaboTexODFFile)する目的でしたが、この機能で

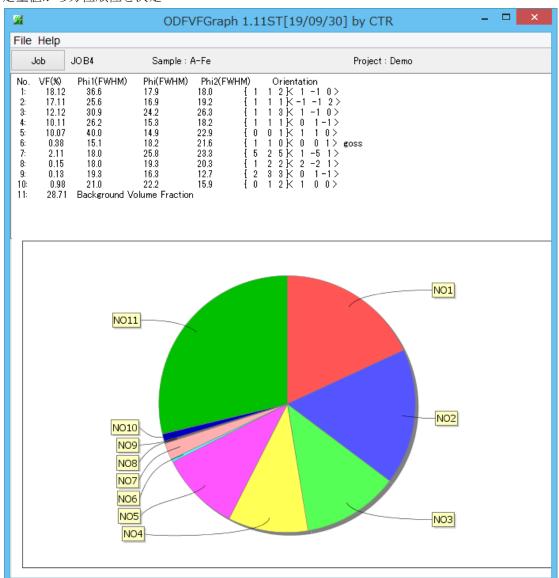
EBSD で解析された ODF 図も LaboTex の Job ファイルに変換できます。

EBSD と同じように他のODF解析結果も GPODFDisplay 経由で LaboTex の Job に変換できます。 今回ODF-BのODF図から VolumeFraction 計算を行い、方位密度の係数評価による 方位順位と比較した。


VolumeFraction計算

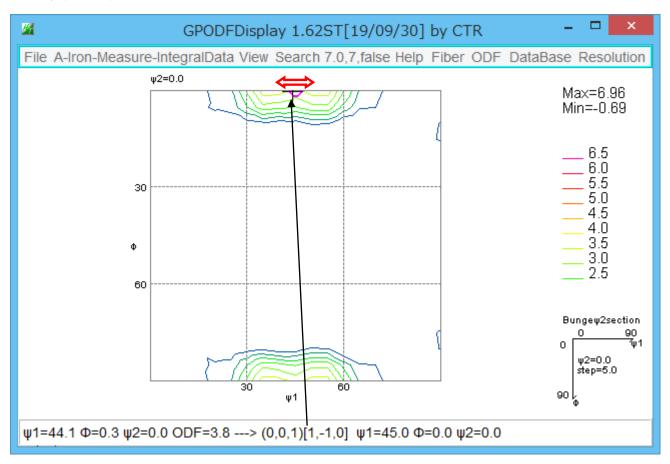
ImportされたODF図

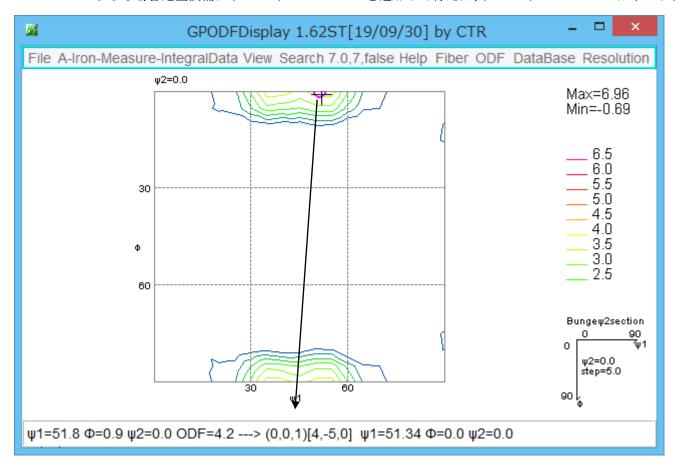

上記 VolumeFraction から計算した ODF 図


Import されたODF図と VolumeFraction のODF図から極点図を計算し比較

上段: Import されたODF図から計算した極点図

下段: VolumeFraction から計算したODF図


{110}極点図のErrorが大きいが、ほぼ±1.5%以内であり、正確なVF%と考えられる。


順位はODF図から判断した順位と同じであるが、値が異なる。理由はEuler角の広がりである。

No	Texture Component		On	Distribut	ion	<mark>Е∀НМ</mark> 🔑	ғ₩НМФ	FWHM P 2	Volume Fraction	
1	{ 1 1 2}x 1 -1 0>	Ŧ	$\overline{\lor}$	Gauss	$\overline{\mathbf{v}}$	36.6	17.9	18.0	18	%
2	{ 1 11}<-1-12>	Ŧ	$\overline{\lor}$	Gauss	Ŧ	25.6	16.9	19.2	17	%
3	{ 1 1 3 }< 1 -1 0 >	Ŧ	$\overline{\lor}$	Gauss	$\overline{\mathbf{v}}$	30.9	24.2	26.3	12	%
4	{ 1 1 1 }< 0 1 · 1 >	Ŧ	$\overline{\lor}$	Gauss	\forall	26.2	15.3	18.2	10	%
5	{ 0 0 1 }< 1 1 0>	Ŧ	$\overline{\lor}$	Gauss	\forall	40.0	14.9	22.9	10	%
6	{ 1 1 0 }< 0 0 1 > goss	Ŧ	$\overline{\lor}$	Gauss	Ŧ	15.1	18.2	21.6	0	%
7	{ 5 2 5}< 1 -5 1>	Ŧ	$\overline{\lor}$	Gauss	\forall	18.0	25.8	23.3	2	%
8	{ 1 2 2}< 2 -2 1>	Ŧ	$\overline{\lor}$	Gauss	Ŧ	18.0	19.3	20.3	0	%
9	{ 2 3 3}< 0 1-1>	Ŧ	$\overline{\lor}$	Gauss	Ŧ	19.3	16.3	12.7	0	%
10	{ 0 1 2}< 1 0 0>	¥	$\overline{\lor}$	Gauss	v	21.0	22.2	15.9	1	%
✓ Max. Linearity Orientation Set Set from Database (sort by ✓ Save Current Set Background 30									%	

φ1方向に広がりが認められる。

方位がずれている為、 ϕ 1方向に広がって定量が行われています。 このような場合定量候補に $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$ < $\{0\ 0\ 1\}$

