チタン合金の主要方位をシュミレーション

LaboTexのシュミレーションを使用しチタン合金の主要方位 ODF 図を作成。 ODF 図から極点図、逆極点図を作成し、Exportし ODF 図、極点図、逆極点図の整合性をチェックする。

シュミレーションした各方位の {002} 極点図

2019年10月20日 *HelperTex Office*

1. 概要

Hexagonalでは、Ti, Mgが扱われる。

T i の主要方位をLaboTexで計算し、3指数から4指数に変えて表示してみます。

2. LaboTexでは、ODFのModeling機能があります。

予め、Option画面で B-Type (^{BType X=[10-10]})を選択しEuler角度で入力する。

l exture Component		Un	Distribution	F WHM #4	FAHM	F WHM ¥2	Fraction	
{ 0.00, 0.00, 0.00}	•	◄	Gauss 💌	10.0	10.0	10.0	50 🕂 %	- Sample Name
{ 54.74, 90.0, 45.} brass	Ŧ		Gauss 👻	10.0	10.0	10.0	10 🕂 %	001-210B
{ 39.23, 65.91, 26.5} copper	Ŧ		Gauss 🖵	10.0	10.0	10.0	10 🕂 %	Project Name
{ 0.0, 45., 0.} goss	Ŧ		Gauss 🖵	10.0	10.0	10.0	10 🕂 %	Ti-B 🗨
{ 45., 90., 0.}	Ŧ		Gauss 🖵	10.0	10.0	10.0	10 🕂 %	
{ 35.26, 90., 45.}	Ŧ		Gauss 🖵	10.0	10.0	10.0	10 🕂 %	Cell Parameters (Relative)
{ 35.26, 90., 45.}	Ŧ		Gauss 👻	10.0	10.0	10.0	10 🔆 %	a 1.0 b 1.0 c 1.587
{ 90., 54.74, 45.}	Ŧ		Gauss 🖵	10.0	10.0	10.0	10 🕂 %	
{ 74.21, 45., 90.}	Ŧ		Gauss 👻	10.0	10.0	10.0	10 🕂 %	∝ 90.C β 90.C γ 120.1

又、ODF表示では、X軸を選択表示できます。

左をA-TYpe、右をB-Typeとして扱います。 入力はEuler角度からODF図を作成 以下で右側のX軸を[10-10]として扱います。

3. ODF図を4指数で扱うため、ODF図をEXportし、CTRソフトウエアで表示します。 ODF図をExportする場合、B-TypeでExportします。

					L	aboTex ·	- Ti-Plane	User	
File	Edit Viev	v Calculation	Analysis	Model	ing Help				
	New Samp Open Samp Change/Ne	le/Project ble w User				A 🛃 🧱		₩VJ 🛦	.
	ODF Expor	t		•	ODF Export ((Phi 1 Sect	tion)		H
	PF Export				ODF Export	(Phi 2 Sec	tion)		mc
	EPF/PPF/CO	DR/POW/SOR E	xport		ODF Export ((Phi 1, Phi	2, Phi, Odf) B	asic area	
	Print				ODF Export(Phi1,Phi2,F	Phi) Full range	·	10
	Print Setup			_	<u>e</u> 4	Y	1	283.8 258.1	Ma»

GPODFDisplayでB-Typeを扱う場合

1	<u>86</u>	GPODFDisplay 1.33M by CTR user CTR HelperTex										
ł	File	Titanium View Search 7.0,7,false Help Fib	er O	DF DataBase Resolution								
		LaboTex ODF Export (PHI1 PHI2 PHI ODF)		(Hexa: AType) or Other								
		TexTools ODF Export		(Hexa: BType)	X							
F	3 — Т	StandardODF (ODF15.0DF15.bin) y p e として読み込みます										

GPODFDisplayで方位計算

ODF 図上をマウス移動で方位計算し、クリック位置を+、計算方位位置を〇で表示

 $\phi = 0$ 、 $\Phi = 0$ 、 $\phi = 0$ とする場合、マウス分解能などで $\{0, 0, 0\}$ など正確に選択が難しい場合

表示している ϕ 2画面上をマウスクリックで+〇を消し、Titaniumをクリック CrystalOrientationを表示

<u>88</u>	GPODFDisplay 1.33	3M by CTR user CTR HelperTex							
File Ti	tanium View Search 7	7.0,7,false Help Fiber ODF DataBa							
fi	30DF	1-210-0DF-TI.TXT							
2	ALLODF								
	Hexagonal								
	CrystalOrientation								
∎ ∣ Tita	n i umを選択、E u								
25	HexaConvert 1.0	09M by CTR user CTR HelperTex 🛛 – 🗖 🔜							
File Step	Help								
/	A 🗌 X-Axis[100] ([2-1-10])	. B 🗹 X-Axis[210] ([10-10])							
MIller N	otation (3Axis Notation)								
Miller Br	avais Notation(# Axis Notation)								
Euler(p Fp2)									
	Material setect								
	Titanium.TXT	~							
	c/a 1.587	ψ2 0 v Calc							

4指数を選択、Disp、Return Structure

🛛 HexaConvert 1.09M by CTR user CTR HelperTex 🛛 – 🗆 💌
File Step Help
A 🗆 X-Axis[100] ([2-1-10])
MIller Notation (3Axis Notation)
Mill Bravais Notation(4 Axis Notation)
Euler(p1Fp2)
Material select
Titanium.TXT 🗸
c/a 1.587 ψ2 0 ✓ Calc
DISP
Position 10 V Disp size 200 V DISP
BG Corr Black v Line size 1.0 v MINUS
OK Return Structure

ODF図上にEuler角度(0、0、0)を表示します。

5. 逆極点図表示と方位の決定

LaboTexde計算した逆極点図をExportし、CTRで扱う。

InverseTools の GPInverseDisplay を使用

<u>24</u>		ODFPoleFigure2 3.58YMT[19/12/31] by CTR					
File Linear(absolute)3D	ToolKit Help InitSet BGMode I	Measure Condition Free OverlapRevision MinimumMode Rp					
Files select ASC(RINT-PC)	PFtoODF3						
-Calcration Condition	SoftWare						
Previous Next	ImageTools						
Backgroud delete mode	PopLATools						
🔽 🔿 DoubleMode 🔿 Si	ODFAfterTools	de 💿 Nothing BG defocus DSH1.2mm+Schulz+RSH5 🗸 🗌 Minimu					
Peak slit 7.0 mm BG	PoleOrientationTools	GSIit BG Scope 80 deg. 90 deg. Set Dis					
- AbsCalc	DataBaseTools						
Schulz reflection meth	FiberTools	13.9 1/cm Thickness 0.1 cm v 2Theta					
Defocus file Select	StandardODFTools						
Defocus(1) function	DefocusTools						
Make defocus func	ClusterTools	Normalization					
Defocus(3) function	InverseTools	BB185mm v Limit Alfa Defocus value F					
O Defocus(2) function	MeasureDatatoASCTools	DSH12mm+Schulz+RSH5mm					
	OrientationDisplayTools	Search minimum rp.(Oub					

🞽 Inve	rseTools 1.13ST[19/12/31]	by CTR – 🗆 💽
File Help		
Asc Profile(or Division)	ProfiletoDivisionProfile	DivisionProfile(index) Asc
r Asc DivisionProfile(Index)	InverseAll	Inverse TXT File
TXT HKL Intens 2Theta TEXT data	MeasureDatatoMYICDD	MYICDD data
InverseTXT Inverse Data	InverseDisplay	Inverse 3D Display
InverseTXT Hexainverse Data	InverseDisplayHexa	Hexalnverse 3D Display
Asc Profile	Lotgering Method	Text Data
Asc(files) Profiles	Lotgering and Inverse	Text Data
ODF-Inverse Inverse Data	InverseDirection	Direction-Plane Data disp
ODF-Inverse Inverse Data	GPInverseDisplay	Inverse Contour Display
Inverselist Inverse Data	InverseCubicContourDisplay	InverseContour Display
Inverselist Inverse Data	InverseContourDisplay	InverseContour Display
Inverselist Inverse Data	InverseDisp2	InverseDisplay36Box
hkllist txtdata apend	hkllistDisplay	csv file
hkllisdtDisplay listDisplay	InverseResultDisplay	resultDisplay
ODF-Inverse	GPInverseDisplay-old	Inverse 3D Display

ND-RD の方向を決定 逆極点図は Contour と 3 Dを表示

GPInverseDisplay 1.3157[19/12/31] by CTR – 🗆 🗙
File Help
Material
Titanium.TXT 29705 b 2.9505 c 4.6826 α 90.0 β 90.0 γ 120.0
ODF
LaboTex popLA StnadredODF TexTools
Method
Plane V Miller Nortation(3 Axis Nortation) V 15 15
Inverse data select
V:\Ti-labotex\001-210\001-210AtoB-Inverse.TPF
Inverse Display
Inverse max val 2D-3D
77.86 2D 0.3 < 1.0 800 Cycles 1 v Weight 9 v
Peak data
Disp Font size 12 v Filename 12 v Base 12 v Full Inverse disp Inverse data
Display
ContourDisplay Center[001] Level II Peak serach

3指数のPlaneでは								
Plane V Miller Nortation(3 Axis Nortation) V	Deland							
{001}0.0 30.0 77.86 0.0 0.0 4指数のDirectionでは rMethod	Peaksearch							
Direction V Miller-Bravais Notation(4 Axis Nortation) V	PeakSearch							
[0 0 0 1] 0.0 30.0 77.86 0.0 0.0								
Contour の場合、マウス指定の Plane<->Direction は								
InverseContourDisplay 1.24ST[19/12/31] by								
File Help View Titanium Max=9 Direction MousePosition ON Directioninput V:\Ti-labotex\001-210\Inverse Plane Max=77.86 toCenter[001] 70.0 60.0 50.0 11-201 40 n 40 n								
✓ InverseContourDisplay 1.24ST[19/12/31] by □ × File Help View Titanium Max= © Direction MousePosition ON Directioninput Input Plane								
M InverseDirection 1.15ST[19/12/31] b								
File Help Max index 15 Method Direction Material Titanium.txt φ 0 β 0 Calc Center[001] Hexagonal: Input βangle 30->60 3 15 3 15 Plane Max index 15 5 3 15 15								
Exit return Structure								

これらの機能を使って説明します。

(φ=0.0 , β=0.0) Z=77.86 --> (0,0,0,1)

 $(\phi=90.0, \beta=30.0)$ Z=13.47 --> [1,0,-1,0]

7. $\{-1 \ 2 - 1 \ 0\} \ < 1 \ 0 - 1 \ 0 > \ \{-1 \ 2 \ 0\} \ < 2 \ 1 \ 0 >$

Texture Component		Ωn	Distribut	tion	EVHM Ø.	БУНМФ	EVHN®	2. Volume		
	-	<u>.</u>	Gauee	-	10.0	10.0	10.0	Fraction	Sample Name	
{ 54.74 90.0 45 } brace			Gauee		10.0	10.0	10.0		-120-210B	
{ 39.23, 65.91, 26.5} copper			Gauss		10.0	10.0	10.0		Project Name	
{ 0.0. 45 0.} goss		П	Gauss		10.0	10.0	10.0			
{ 45., 90., 0.}			Gauss	-	10.0	10.0	10.0			
{ 35.26, 90., 45.}			Gauss		10.0	10.0	10.0	10 2 %	Cell Parameters (Relative)	
{ 35.26, 90., 45.}			Gauss	T	10.0	10.0	10.0	10 2%	a 1.0 h 1.0 c 1.587	
{ 90., 54.74, 45.}	-		Gauss	-	10.0	10.0	, 10.0	10 + %		
{ 74.21, 45., 90.}	-	Г	Gauss	-	10.0	10.0	10.0	10 + %	∝ 90.C β 90.C γ 120.1	
, { 15.23, 47.12, 68.20}	-		Gauss		, 10.0	10.0	10.0	10 ÷ %		
0 5 20 2 40 4 60 (-1.2,-1.0)[1.0,-1.0][1=0.0,F=90.0,f2=	5 15 =0.0 OI	DF=4	10 30 50 135.09		15 	Max=435.09		A X-Axis[100 Notation (3Axis Not 1 2 2 0 Iravais Notation(4 A 2 0 1 Euler(p1Fp Euler(p1Fp I I I I I I I I I I I I I I I I I I I	$B \checkmark X - Axis[210] ([10-10])$ itation) $2 \lor 1 \lor 0 \lor 1$ itation) $0 \lor 1 \lor 0 \lor 1 0 \lor 1$ itation) $0 \lor 1 \lor 0 \lor 1 0 \lor 1$ itation) $0 \lor 1 \lor 0 \lor 1 0 \lor 1$ itation) $0 \lor 1 \lor 0 \lor 1 0 \lor 1$ itation) $0 \lor 1 \lor 0 \lor 1 0 \lor 1$ itation) $0 \lor 1 \lor 0 \lor 0$ itation) $0 \lor 0 \lor 0$ itation) $0 \lor 0 \lor 0 \lor 0$ itation) itation itation) itati	hki v
V:\TI-labotext-120-210\001 ND	1-210-1	inv-b	-120-210	-20			7 -120-210E	V:TL-labotext- RD	120-2100001-210-inv-b.TPF	Max=27.6' Min=0.0 24.0 22.0 18.0 14.0 12.0 4.0 2.0 8.0 6.0 4.0

UVXW

(φ=90.0 , β=60.0) Z=27.7 --> (1,1,-2,0)

(φ=90.0 , β=30.0) Z=27.61 --> [1,0,-1,0]

8. $\{0 \ 1-1 \ 0\} < 0 \ 0 \ 0 \ 1 > \{0 \ 1 \ 0\} < 0 \ 0 \ 1 >$

ı.	T	exture (Component		On	Distributi	ion	FYHM 🖗	г₩нмФ	F¥HM 🖗	Volum Eracti	ne on	
{	90.00,	90.00,	30.00}	•	$\overline{\checkmark}$	Gauss	•	10.0	10.0	10.0	50	⇒%	Sample Name
{	54.74,	90.0,	45.} brass	$\overline{\mathbf{v}}$		Gauss	-	10.0	10.0	10.0	10	÷%	
{	39.23,	65.91,	26.5} copper	Ψ.		Gauss	Ψ.	10.0	10.0	10.0	10	÷%	Project Name
{	0.0,	45.,	0.} goss	Ŧ		Gauss	Ψ.	10.0	10.0	10.0	10	÷%	Ti-B 🗨
{	45.,	90.,	0.}	Ŧ		Gauss	Ŧ	10.0	10.0	10.0	10	÷%	
ł	35.26,	90.,	45.}	-		Gauss	Ŧ	10.0	10.0	10.0	10	÷%	Cell Parameters (Relative)
ł	35.26,	90.,	45.}	-		Gauss	-	10.0	10.0	10.0	10	÷%	a 1.0 b 1.0 c 1.587
{	90., 5	54.74,	45.}	-		Gauss	Ψ.	10.0	10.0	10.0	10	- %	
{	74.21,	45.,	90.}	_		Gauss	-	10.0	10.0	10.0	10	= %	∝ 90.C β 90.C γ 120.1
{	15.23,	47.12,	68.20}	Ŧ		Gauss	\mathbf{v}	10.0	10.0	10.0	10	- %	

{01-10} <0001>に対し、ND 逆極点図は、(10-10)面で、(100),(010)が一致する。 RD 逆極点図は、[0001]方向で[002]と一致する。

RD 逆極点は、[11-20]方向であるが、[2-1-10]も同じ

逆極点図は、[11-20]は30->60、[2-1-10]は30->0を表示で上図は平均値で表示しています。

Direction [20-21]に対する Plane は(110-118)である9以内では(50-54)が近い.(504)極点図の RD とした

