random成分が含まれるアルミニウム合金のVolumeFraction解析 A5052P

> 2023年2月07日 *HelperTex Office*

- 1. 概要
- 2. random成分が含まれるか?
- 3. 極点図
- 4. 極点データ処理
  - 4.1 バックグランド確認
  - 4.2 バックグランドの修正
  - 4.3 defocus補正
  - 4. 4 バックグランド削除、defocus補正、規格化
- 5. 各種 ODF ソフトウエア向けデータ作成
- 6. random%の計算
  - 6.1 LaboTex
- 7. VolumeFraction計算
  - 7.1 LaboTex
    - 7.1.1 検索対象方位を自動決定

1. 概要

極点図の解析において方位の定量(VolumeFraction(VF%))も重要な解析手段であ るが、報告例は少ない。本資料は実サンプルを例に手法の説明を行う。 解析手法は、正確なバックグランド測定を行い、バックグランド除去とdefocus補正を 行い、ODF解析を行う。VF%の打ち切りは解析したODFから予めrandom%を計算し、 VF%の残差(backgroud)がrandom%と一致したら終了 VolumeFraction計算時、方位のズレ修正が重要になります。

VOTUMEFFACTIOn計算時、万位の人レ修正が重要になります。 VF%の評価は

ODF解析による再計算極点図の一致度Rp%評価
 VF%より計算されたrandom%の一致
 極点図から計算したODF図とVF%で計算したODF図の一致
 により評価します。

copperが1% (VF%=1%)、他はreandom







randomlprofileでrandom%を表示 (GPODFDisplayの機能)





#### 2. random成分が含まれるか?

*θ* / *θ* プロファイルで含まれる可能性を評価



赤プロファイル:ICDD からプロファイル作成 r a n d o m成分が含まれている可能性が高い

3. 極点図

backgroundを除いた方位の組み合わせ

A 方位+B 方位+C 方位+D 方位+r a n d o m=1 0 0%

| A方位        | B方位 | C方位 | D方位 |  |  |  |  |  |
|------------|-----|-----|-----|--|--|--|--|--|
| random     |     |     |     |  |  |  |  |  |
| background |     |     |     |  |  |  |  |  |



b a c k g r o u n d は極点データ処理で削除

4. 極点データ処理

| 正確に、ハツククフント削除とdeiocus相正を打り。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| ▲         ODFPoleFigure25 4.07T[23,03/31] by C         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | × |
| File Linear(absolute)3D ToolKit leip initSet BGMode Defocus ondition Free OverlapRevision MinimumMode Rp% Normalization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
| ASC(RINT-PC) V 111-N0011ASC 200-N001/ASC 220-N0011ASC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
| Holder<br>Pename<br>Renamw-de fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| Cateration Condition         Next         Lift/source-Data状期定デー分O¥材料 - AW2011-02-14-標準AEdX#¥A5052PWN0011Hest¥111-N0011ASC         Next         Lift/source-Data状期定デー分O¥材料 - AW2011-02-14-標準AEdX#¥A5052PWN0011Hest¥111-N0011ASC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| Calcration Codition       htt         Previs       Next         L#Mssure-Data#REET-%0xH##4 - AW2011-02-14-###AB####A5052P#N0011Wtest#111-N0011ASC       htt         DoubleMo_       SeleMode         ObubleMo_       SeleMode         Minimum(α β)       MinimumAverase(α)X         0.5       Trans blinds anele         30.0       Peak sitt 7.0         Peak sitt 7.0       mm         Peak sitt 7.0       mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| c Odcration Codition       Previde       Next       L¥Messure-Data¥∰EF ~50¥##4 Al9211-02-14-4∰#AB##¥#A5052₽¥N0011¥test¥111-N0011ASC       Int.       Int.       Int.       Int.       Int.       Int.       Concentration       Int.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| Calcration Caldition      Previs     Next     L#Mssure-Data##REF -%0#### AW2011-02-14-###AB####A5052P#N0011West#111-N0011ASC      Minimum mo     OutbleMo     SeleMode LowMode HighMode Nothine BG defocus     DEfl2mm*Schulz+RSH5mm      Minimum mo     Pak sit 7.0 mm     Peak sit 7.0 |   |
| Calcration Caddition      Mext     L#Messure=Data##REET=%0####4 BGE##ABB###A5052P#N0011West#111=N0011ASC      Prev/ss     Next     L#Messure=Data##REET=%0####4 BGE##ABB###A5052P#N0011West#111=N0011ASC      Prev/ss     DoubleMo     SteleMode     Lemessare=Calcrate##ABB###A5052P#N0011West#111=N0011ASC      Prev/ss     DoubleMo     SteleMode     Lemessare=Calcrate##ABB###A5052P#N0011West#111=N0011ASC      Prev/ss     DoubleMo     SteleMode     Lemessare=Calcrate##ABB###A5052P#N0011West#111=N0011ASC      Prev/ss     DoubleMo     SteleMode     Lemessare=Calcrate##ABB###A5052P#N001West#111=N0011ASC      Prev/ss     DoubleMo     SteleMode     Lemessare=Calcrate#ABB###A5052P#N001West#111=N0011ASC      Prev/ss     DoubleMo     SteleMode     Lemessare=Calcrate#ABB###A5052P#N001West#111=N0011ASC      Prev/ss     Prev/ss     DoubleMo     SteleMode     Lemessare=Calcrate#ABB###A5052P#N001West#111=N0011ASC      Prev/ss     Prev/ss     Prev/ss     SteleMode     Lemessare=Calcrate#ABB###A5052P#N001West#111=N0011ASC      Prev/ss     Prev/sss     Prev/sss     Prev/sss     Prev/ss     Prev/ss     Prev/ss   |   |
| Biologication Caddition       Initial Change         Previde       Next       Lift Maxuee-Data #BREF - MOWH## - Alw2011-02-14-4##ABU###A5052P#N0011WestW111-N0011ASC         Previde       Next       Lift Maxuee-Data #BREF - MOWH## - Alw2011-02-14-4##ABU###A5052P#N0011WestW111-N0011ASC         Previde       ScheleMade       LowMode       HightMode         Noncomme       ScheleMade       LowMode       HightMode         Minimum(cz.8)       MinimumAverage(c2)X       0.5       Trans blinds anele       30.0         Peak slit, 7.0       mm       Peak Slit / BGS_B3 Scope       80.0       deg.       90.0       deg.       Set       Set Allt       Disp         Abscialc       Trans       Schulz reflection method       Change       Absorption coefficien       133.0       1/cm       Thickness@0.2       cm       Set       2Theta       38.34       deg.       0.1/kt       Profile         Defocus(1) functions file       EVDATAWtestWdat2WALyandomWdefocus/DEFOCUS,F.TXT       Make defocus function files folder(Calc unbackdefocus)       DSH12mm+Schulz+RSH5mm       Limit Alfa Defocus value       Free(LimitValue=0.0)       If Re       Profile         Defocus(2) function files folder(Calc backdefocus)       DSH12mm+Schulz+RSH5mm       Limit Alfa Defocus value       Free(LimitValue=0.0)       0.1/Re       Profile <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| Biodication Caddition       Mext       Lift Assure - Data #REE 7 ->OV#RH - AW2011-02-14-4##A6052P#N0011WestV111-N0011ASC       Mill       1.1.1       Chance         DoubleMoc       Selection       Selection       Selection       Minimum and       A 3 Arithmetic mean V Disp         Minimum(2, 0)       MinimumAverage(2)X       0.5       Trans blinds andle       30.0       B       0.0       Interpration V Full       Disp         Peak slift 7.0       mm B3 Slif 7.0       mm Pad Slif 7.0 Slift       DoubleMoc       Full       Disp       Airthmetic mean V Disp         RbsCale       Trans Schulz reflection method       O thange       Absorption coefficien       33.0       I/cm       Thickness 0.2       Cm       Set       2Theta       38.34       dee.       0.1/kt       Profile         Defoorus(1) functions file       E       LVDATAHtestVdats2VALyandomidefoous/DEFOCUS,FTXT       Make defocus function files folder(Calc unbackdefocus)       DSH12mm*Schulz+RSH5mm       Limit Alfa Defocus value       Free(LimitValue=0.0) v       0       1/kt       Profile         Defoorus(2) function files folder(Calc backdefocus)       DSH12mm*Schulz+RSH5mm       Limit Alfa Defocus value       Free(LimitValue=0.0) v       0       1/Ra       Profile         Operation files folder(Calc backdefocus)       DSH12mm*Schulz+RSH5mm       Limit Alfa Defocus valu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |

4.1 バックグランド確認(background部分を拡大して確認 黄色、紫)



## 4.2 バックグランドの修正

バックグランド削除モードをdefousに合わせる

| BGMode Measure Con | ditic                                                                                            |
|--------------------|--------------------------------------------------------------------------------------------------|
| Measure            | 11                                                                                               |
| Straight(Option)   |                                                                                                  |
| Defocus(Option)    |                                                                                                  |
| Measure(Calc)      |                                                                                                  |
| Minimum            |                                                                                                  |
| All background     |                                                                                                  |
|                    | BGMode Measure Con<br>Measure<br>Straight(Option)<br>Defocus(Option)<br>Measure(Calc)<br>Minimum |



<u>minP maxP avep bg1 bg2 auto</u> 平均値範囲は各極点図で独立

o 55 alfa

15 20 25 30 35 40 45 50

60 65 70 75 80 85 90

## 4.3 defocus補正

d e f o c u s プロファイルは受光スリット幅と測定 2  $\theta$  角度で決定される 以下図では補正量を示す左側が極点図の外側、反射法では  $\alpha$  角度 1 5 度より始まる。



# 4.4 バックグランド削除、defocus補正、規格化

データ処理結果



## 予測Rp%



予測 Rp%プロファイルはプラスマイナス1.5%以内で正常である。

5. 各種 ODF ソフトウエア向けデータ作成



| 名前                         | 更新日時 ^           | 種類           |
|----------------------------|------------------|--------------|
| 📒 LaboTex                  | 2023/02/05 21:05 | ファイル フォルダー   |
| 늘 StandardODF              | 2023/02/05 21:05 | ファイル フォルダー   |
| 📒 Tex Tools                | 2023/02/05 21:05 | ファイル フォルダー   |
| 늘 popLA                    | 2023/02/05 21:05 | ファイル フォルダー   |
| TEX MTEX                   | 2023/02/05 21:05 | ファイル フォルダー   |
| 💼 newODF                   | 2023/02/05 21:05 | ファイル フォルダー   |
| 🖳 220-NO011.ASC            | 2011/04/13 11:00 | RINT2000774- |
| 🖳 111-NO011.ASC            | 2011/04/13 11:00 | RINT2000774- |
| 🖳 200-NO011.ASC            | 2011/04/13 11:00 | RINT2000774- |
| 111-NO011_chB02D2S_2.TXT   | 2023/02/05 19:34 | テキスト文書       |
| 📳 200-NO011_chB02D2S_2.TXT | 2023/02/05 19:34 | テキスト文書       |
| 📳 220-NO011_chB02D2S_2.TXT | 2023/02/05 19:34 | テキスト文書       |

#### 6. random%の計算

解析 ODF 図をExportし、GPODFDisplayの機能で計算 6.1 LaboTex

J. I Laborex



# 7. VolumeFraction計算

7.1 LaboTex

DataBase管理

1/4対称でVolumeFraction計算のため、以下を削除

| Prientations Type Database                                                             |                            |                         |                                               |          |  |  |  |  |  |
|----------------------------------------------------------------------------------------|----------------------------|-------------------------|-----------------------------------------------|----------|--|--|--|--|--|
| Crystal Symmetry Systems                                                               | Number                     | Number of Orientations  |                                               |          |  |  |  |  |  |
| Cubic                                                                                  |                            | 22                      |                                               |          |  |  |  |  |  |
| Database                                                                               |                            |                         |                                               |          |  |  |  |  |  |
| No Orientation Type Name                                                               | P <sub>1</sub>             | Φ                       | <b>19</b> 2                                   |          |  |  |  |  |  |
| 14 { 2 3 3} < 0 1 -1 ><br>15 { 1 1 1 } < 0 1 -1 ><br>16 { 1 1 2 < 1 -1 0 >             | -113.09<br>-120.00<br>0.00 | 50.24<br>54.74<br>35.26 | 33.69<br>45.00<br>45.00                       |          |  |  |  |  |  |
| 17 { 1 2 3} 4 1 2>                                                                     | -46.91                     | 36.70                   | 26.57                                         |          |  |  |  |  |  |
| 18 { 1 2 3}< 4 1 2> H<br>19 { 1 3 2}< 6 4 3>S-1                                        | -46.91<br>27.03            | 36.70<br>57.69          | 26.57<br>18.43 L                              |          |  |  |  |  |  |
| 20 { 2 3 1}< 3 4 6>S-2<br>21 { 2 1 3}<-3 6 4>S-3<br>22 { 2 3 1}<-3 4 6>S-4             | 52.87<br>58.98<br>-127.13  | 74.50<br>36.70<br>74.50 | 33.69<br>63.43<br>33.69                       |          |  |  |  |  |  |
| Delete Edit                                                                            | Nou                        | New {                   | אישערא ואם                                    |          |  |  |  |  |  |
|                                                                                        | INCOV                      | HCW (                   |                                               |          |  |  |  |  |  |
| Orientation Euler Angles                                                               | 14 (-360 - 360)            | Ф<br>(-180 - 18         | <u>الالالالالالالالالالالالالالالالالالال</u> | <u>)</u> |  |  |  |  |  |
| Orientation Euler Angles<br>Fiber<br>Angle Part Name<br>( 0.0, 0.0, 0.0)<br>Add/Change | 14400 (-360 - 360)         | Ф<br>(-180 - 18         | 142)-00497<br>162<br>30) (-360 - 360          | <u>)</u> |  |  |  |  |  |

| Orientations Type Database                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Crystal Symmetry Systems                                                                          | Number of Orientations                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
| Cubic                                                                                             | 18                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
| Database                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| No Orientation Type Name                                                                          | P1 P P2                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                             | 0.00         18.43         0.00           26.57         48.19         26.57           23.09         50.24         56.31           0.00         25.24         45.00           -113.09         50.24         33.69           -120.00         54.74         45.00           0.00         35.26         45.00           -46.91         36.70         26.57           27.03         57.69         18.43 |  |  |  |  |  |  |  |  |  |
| Delete Edit                                                                                       | New New (HKL) <uvw></uvw>                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
| Orientation Euler Angles<br>Fiber<br>Orientation Type Name<br>Angle Part Name<br>{ 0.0, 0.0, 0.0} | P1 Φ P2<br>(-360 - 360) (-180 - 180) (-360 - 360)                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| Add/Change                                                                                        | Cancel                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
| Close                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |

# 7.1.1 検索対象方位を自動決定

| Crystal !<br><mark>O</mark>              | Symmetry San<br>(Cubic)        | nple Syl | Symmetry Grid Cells for Output ODF Step Diagram Range |           |              |            |            |           | Step<br>Diagram Range +/- | 0.50  |                              |        |
|------------------------------------------|--------------------------------|----------|-------------------------------------------------------|-----------|--------------|------------|------------|-----------|---------------------------|-------|------------------------------|--------|
| 00.0%<br>isfit<br>ood<br>Ickgr.<br>Diff. | Component No 1.                |          | 10                                                    | 0.0%      |              | Compor     | nent No 1. |           | 100.0%                    |       | Component No 1.              |        |
| -4                                       | \$5.0                          | 45       | 0                                                     | -45       | 5.0          |            |            | 45.       | .0                        | -45.0 | )                            | 45.0   |
| No                                       | Texture Component              |          | On                                                    | Distribut | tion         | FYHM 🖗     | г₩нмФ      | FWHM 🖗    | Volume<br>Eraction        |       | Show Sym. Eq.                |        |
| 1 {                                      | 0 0 1 }< 1 0 0 > cube          | -        |                                                       | Gauss     | Ŧ            | 19.6       | 19.7       | 19.6      | 16                        | %     | {001}<100> cub               | e 🖣    |
| 2 {                                      | 0 1 3}< 1 0 0>                 | -        |                                                       | Gauss     | $\mathbf{v}$ | 20.0       | 19.9       | 19.9      | 11                        | %     | Calculation Mode             |        |
| 3 {                                      | 1 1 0 }< 1 -1 2 > brass        | -        |                                                       | Gauss     | -            | 20.0       | 20.0       | 20.0      | 8                         | %     | Automatic                    | Manual |
| 4 {                                      | 1 1 0}< 0 0 1> goss            | -        | $\overline{\mathbf{A}}$                               | Gauss     | Ŧ            | 20.2       | 20.1       | 20.0      | 14                        | %     |                              |        |
| 5 {                                      | 1 1 0}< 1 -1 1>                | -        |                                                       | Gauss     | -            | 20.0       | 20.0       | 20.0      | 6                         | %     | Max. Iteration Number :      | 1,000  |
| 6 {                                      | 1 32}< 6-43>S-1                | -        | $\overline{\mathbf{v}}$                               | Gauss     | -            | 20.0       | 20.0       | 20.0      | 16                        | %     | Max. Fit Error % (*1000) : 厂 | 100 🗧  |
| 7 {                                      | 1 1 2 < 1 1 ·1 > copper        | -        |                                                       | Gauss     | Ŧ            | 20.0       | 20.0       | 20.0      | 9                         | %     |                              | 995    |
| 8 {                                      | 1 0 1 }< 5 2 - 5 >             | -        |                                                       | Gauss     | -            | 20.0       | 20.0       | 20.0      | 7                         | %     | Iteration :                  | 000    |
| 9 {                                      | 1 2 3}< 4 1-2> R               | -        |                                                       | Gauss     | -            | 20.0       | 20.0       | 20.0      | 6                         | %     | Fit Error% (*1000) :         | 62352. |
| 10 {                                     | 5 2 5 }< 1 -5 1 >              | -        |                                                       | Gauss     | -            | 10.0       | 10.0       | 10.0      | 10                        | %     | Fit Calculation Pre          | ogress |
| ✓ Max<br>Linearit                        | x. Orientation Set Set from Da | atabase  | (so                                                   | rt by 👻   |              | ave Curren | t Set      | ackground | 7                         | %     |                              |        |

登録 s れている方位の中から可能性の高い方位を表示

#### 7.1.2 Goss, S, copperのずれを確認





Goss, copperのズレが大きい

## Goss修正 {023} <100>追加

### ODF 解析結果

#### 仮の VolumeFraction 結果



S方位修正







方位として表れ難いF i b e r を指定

↑ C ↓ → L Step 5.00 ÷ 🐅 55.64 ÷ 💁 16.86 ÷ 🥵 45.00 ÷ HKL ( 3 314 ) UVW [[-2 -12 3]]



dataBaseに追加

| – Database                                                              |                                                                                                       |                                               |                                          |                                         |    |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------|-----------------------------------------|----|
| No Orientatio                                                           | n Type Name                                                                                           | P1                                            | Φ                                        | <b>P</b> 2                              |    |
| 15 { 2 3 3}<br>16 { 0 0 1}<br>17 { 1 1 1}<br>18 { 1 1 1}<br>19 { 0 2 3} | <pre>&lt; 0 1-1&gt; &lt; 1 1 0&gt; &lt;-1 -1 2&gt; &lt; 0 1-1&gt; &lt; 0 1-1&gt; &lt; 1 0 0&gt;</pre> | -113.09<br>-45.00<br>90.00<br>-120.00<br>0.00 | 50.24<br>0.00<br>54.74<br>54.74<br>33.69 | 33.69<br>0.00<br>45.00<br>45.00<br>0.00 |    |
| 20 { 2 1 4 }<br>21 { 2 3 6 }<br>22 { 3 314 }<br>23 { 1 2 8 }            | < -7 -10 6 > S-sft<br>< -9 -8 7 > Cop-s<br>< -2 -12 3 ><br>< -2 -7 2 >                                | 64.69<br>102.65<br>55.64<br>79.76             | 29.21<br>31.00<br>16.86<br>15.62         | 63.43<br>33.69<br>45.00<br>26.57        |    |
| Delete                                                                  | Edit                                                                                                  | New                                           | New {                                    | HKL} <uvv< td=""><td>V&gt;</td></uvv<>  | V> |

# 登録した方位が上位にランクされる。



検索からはgoss, copperは除外して検索

#### Errorが収束し、random%=7%を目標に再検索を繰り返す



繰り返し検索でbackgroundは振動しながら、収束する。





#### VolumeFraction結果



上段:ODF解析結果、下段:VolumeFraction結果



## ODF解析結果とVolumeFraction結果のRp%



VolumeFraction結果のrandom%=7%



VolumeFraction結果にはゴーストは発生しないので、 最小値がrandom%である。

#### VolumeFraction

#### LaboTex2 > USER > A5052RLAB > O-Cubic.LAB > Demo.LAB > A5052RLAB > Job03

| 名前         | 更新日時             | 種類       | サイズ   |
|------------|------------------|----------|-------|
| A5052P.APF | 2023/02/06 22:23 | APF ファイル | 6 KB  |
| A5052RODF  | 2023/02/06 22:19 | ODF ファイル | 27 KB |
| A5052RPOD  | 2023/02/06 22:21 | POD ファイル | 2 KB  |

LaboTex - Texture - Quantitative Analysis Report User: A5052P Project: Demo Sample: A5052P Job: 3 Date:2023/02/06 Time:22:21:33

| Volume<br>Fraction |          | FWF    | HM<br>Phil       | FWHM<br>Phi                    | F             | WHM<br>Phi2 |   |   | 01 | rien | ntat | ior | 1   |      |   |       |
|--------------------|----------|--------|------------------|--------------------------------|---------------|-------------|---|---|----|------|------|-----|-----|------|---|-------|
| Component<br>11.83 | No       | 1      | - Distri<br>13.1 | bution :G<br>18.3              | auss          | 15.1        | { | 0 | 0  | 1    | }<   | 1   | 0   | 0 3  | > | cube  |
| Component<br>7.98  | No       | 2      | - Distri<br>19.0 | bution G<br>13.6               | auss          | 14.5        | { | 0 | 1  | 3    | }<   | 1   | 0   | 0    | > |       |
| Component<br>9.85  | No       | 3      | - Distri<br>29.6 | bution G<br>12.2               | auss          | 15.7        | { | 2 | 3  | 6    | }<   | -9  | -8  | 7    | > | Cop-s |
| Component<br>22.71 | No<br>No | 4<br>5 | - Distri<br>37.6 | bution 36<br>12.9              | auss          | 16.0        | { | 2 | 1  | 4    | }<   | -7  | -10 | 6    | > | S-sft |
| 10.30              | No<br>No | р<br>С | - Distri         | bution G<br>14.8               | auss          | 14.5        | { | 0 | 2  | 3    | }<   | 1   | 0   | 0    | > |       |
| 11.19              | NO<br>Mo | 0<br>7 | - Distri<br>36.1 | bution in<br>13.0<br>hution iC | auss          | 16.3        | { | 1 | 1  | 0    | }<   | 1   | -1  | 2    | > | brass |
| 7.79               | No<br>No | ر<br>د | 24.7             | bution is<br>16.9<br>bution iG | auss          | 19.0        | { | 3 | 3  | 14   | }<   | -2  | -12 | 3    | > |       |
| 3.77               | No.      | q      | 23.5             | 25.7<br>bution C               |               | 24.3        | { | 1 | 1  | 0    | }<   | 1   | -1  | 1    | > |       |
| 4.72<br>Component  | No       | 10     | 20.4<br>- Distri | 26.5<br>bution :G              | auss<br>allee | 22.9        | { | 1 | 2  | 8    | }<   | -2  | -7  | 2    | > |       |
| 2.21               |          | 10     | 22.9             | 18.5                           | 4400          | 20.0        | { | 1 | 0  | 1    | }<   | 5   | 2   | -5 3 | > |       |
|                    |          |        |                  |                                |               |             |   |   |    |      |      |     |     |      |   |       |

7.66 Background Volume Fraction

