
逆極点図、極点図による方位解析

2025年02月11日 HelperTex Office

- 1. 概要
- 2.  $\theta/\theta$  S c a n による逆極点解析
  - 2. 1 連続プロファイルをピーク毎の分割プロファイルに変換しrandom比率を計算
- 3.  $\theta/\theta$  S c a n によるロットゲーリング解析
- 4. 背面反射ラウエによる結晶方位解析
- 5. 単独極点図による方位解析
  - 5. 1 極点図の回転
  - 5.2 BCC単結晶のSchmid因子計算
- 6. 多結晶試料の方位解析
  - 6. 1 極点図から ODF 解析
  - 6. 2 Rp%の計算、VF%の計算
  - 6. 3 Schmid因子計算
- 7. 各種方位によるステレオ投影図
  - 7. 1 リガク [X線回折ハンドブック] SiO2のステレオ投影図を描画
  - 7. 2 CubicのCopper (112) [-1-11] と (112) [11-1] の違い

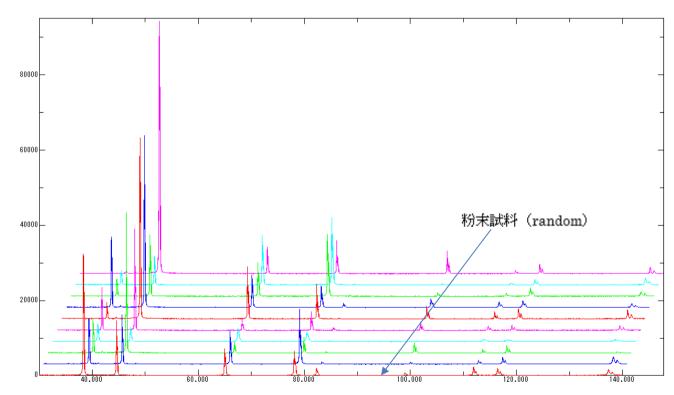
#### 1. 概要

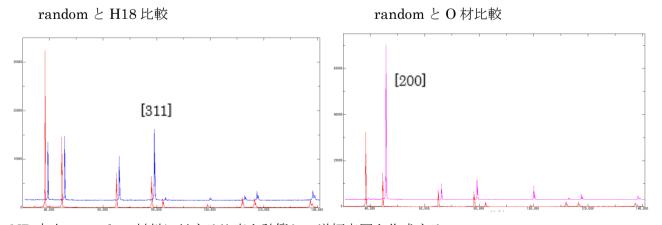
圧延版などの方位解析では逆極点図、極点図、ODF図が計算され比較されている。 単結晶では、1方位の集合であるが、圧延版は各種方位結晶粒の集合体でその量を比較する。




X線回折では、randomサンプルとの比較が行われる。

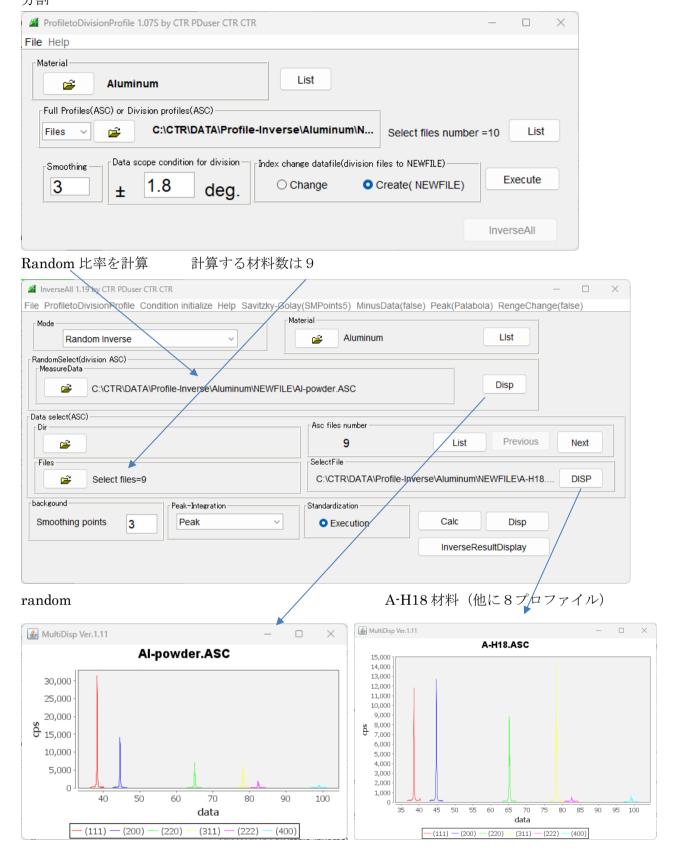
一般的な  $\theta/\theta$  S c a n では、圧延版のND方向の測定が行われ、広範囲の測定データと r a n d o m 試料との 比較で逆極点解析、限られた反射を利用したロットゲーリング手法が用いられている。


極点測定では、X線ビームに対し、 $2\theta$ 角度を固定し、sampleを煽りと回転であらゆる方向の測定を行い、極点図が作成される。多結晶の場合、複数の極点図を測定し、ODF解析による方位解析が行われる。単結晶の場合、背面写真や1面極点図から方位解析が行われる。以下に、


θ/θ S c a n による逆極点解析 θ/θ S c a n によるロットゲーリング解析 背面反射ラウエによる結晶方位解析 単独極点図による方位解析 多結晶試料の方位解析 各種方位によるステレオ投影図 を紹介します。

## 2. θ/θ S c a n による逆極点解析




材料表面の対称反射測定によるプロファイルから解析が行われる 以下はアルミニウムの粉末プロファイルと各種圧延板の  $\theta/\theta$  S c a n プロファイル






ND 方向の random 材料に対する比率を計算し、逆極点図を作成する

2. 1 連続プロファイルをピーク毎の分割プロファイルに変換しr a n d o m比率を計算 分割



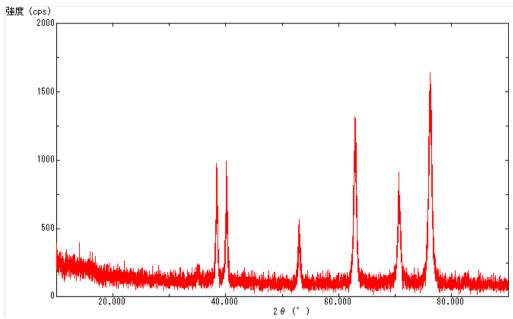


- 3.  $\theta/\theta$  S c a n によるロットゲーリング解析
- 1軸配向評価方法として使われている方法である。
  - C軸配向の場合

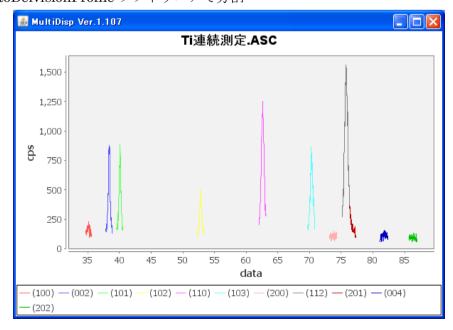
f = (p-p 0) / (1-p 0) $p 0 = \Sigma I o (0 0 1) / \Sigma I 0 (h k 1)$ 

 $p = \Sigma I (001) / \Sigma I (h k 1)$ 

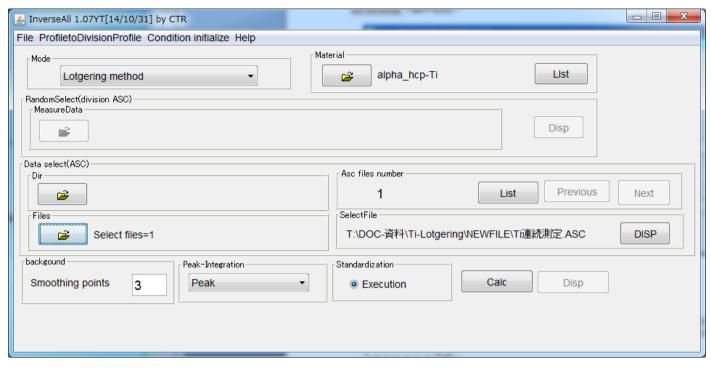
p 0 は無配向サンプルのX線回折強度(I0)を用いる


p は配向サンプルのX線回折強度(I)を用いる

f をロットゲーリングファクタと呼ばれている。


最大値は1.0であり、randomより弱いとマイナスの値になる。

試しに1軸配向ではないTi薄膜に応用してみます。


入力データ

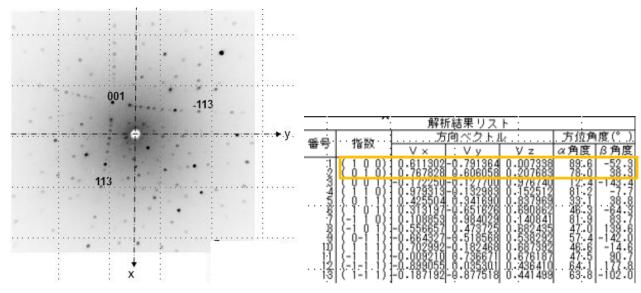


ProfiletoDeivisionProfile ソフトウエアで分割

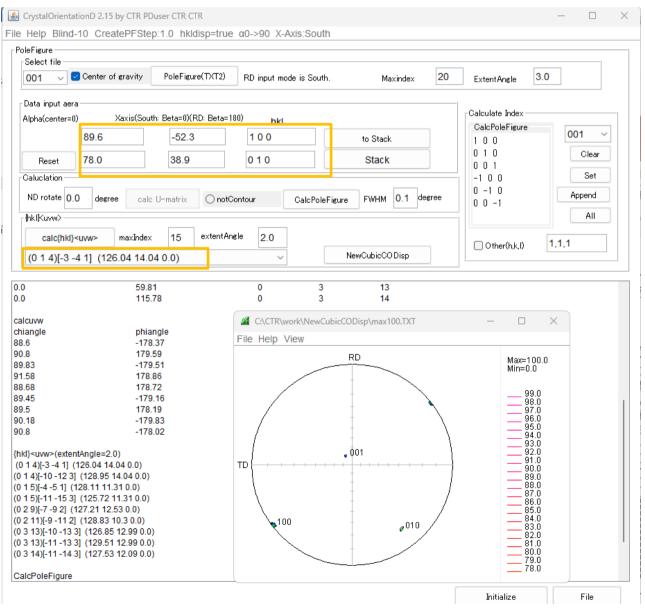


## InverseAll で読み込む

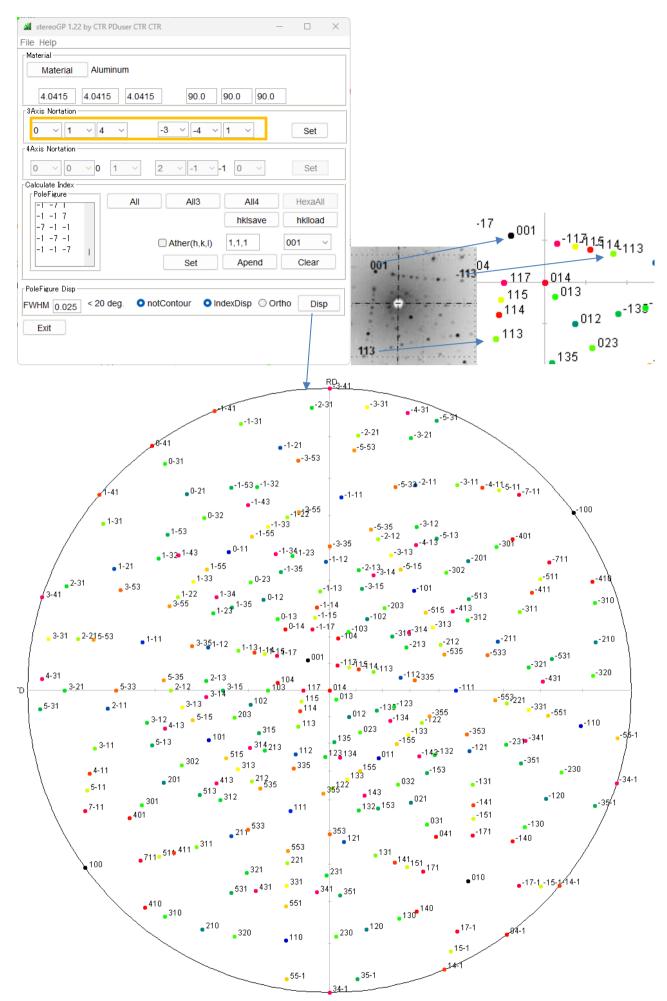



Calcで

| Lotgering method Standardization BGsmpoints=3 PEAK |               |              |           |       |       |       |        |       |        |
|----------------------------------------------------|---------------|--------------|-----------|-------|-------|-------|--------|-------|--------|
|                                                    | (100)         | (002)        | (101)     | (102) | (110) | (103) | (200)  | (112) | (201)  |
| Ti連続測定                                             | -0.1          | 0.027        | -0.532    | 0.015 | 0.15  | 0.076 | 0.0020 | 0.195 | -0.037 |
| Inverseでは                                          |               |              |           |       |       |       |        |       |        |
| ICDDmode S                                         | Standardizati | ion BGsmpoin | ts=3 PEAK |       |       |       |        |       |        |
|                                                    | (100)         | (002)        | (101)     | (102) | (110) | (103) | (200)  | (112) | (201)  |
| Ti連続測定                                             | 0.173         | 1.284        | 0.326     | 1.281 | 3.08  | 2.104 | 1.081  | 3.699 | 0.176  |

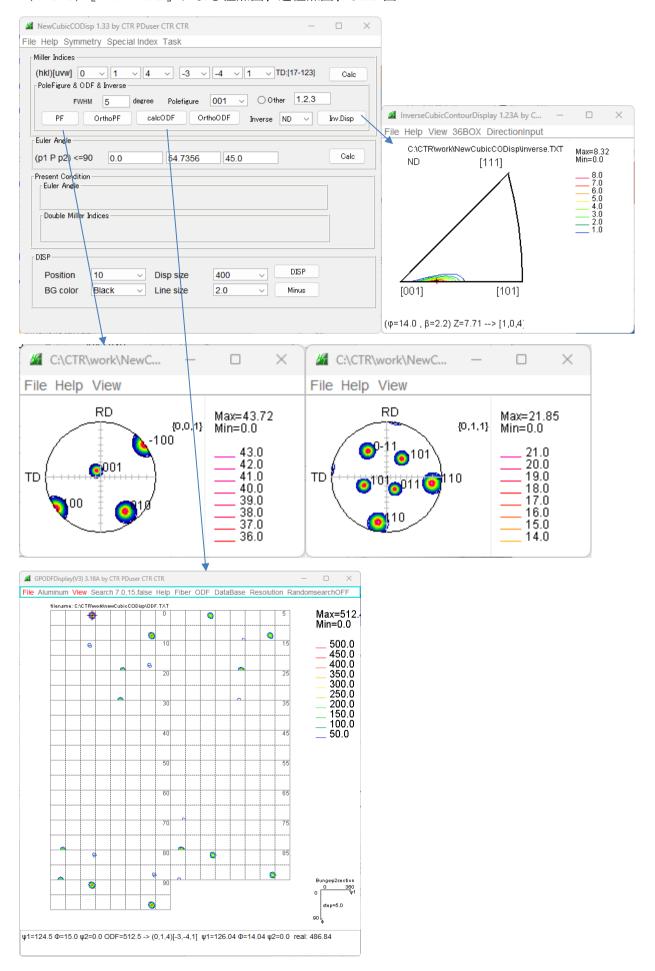

逆極点でrandomレベル1.0より低いとロットゲーリングファクタはマイナスになります。

詳細はInverseAll説明書を参照


#### 4. 背面反射ラウエによる結晶方位解析



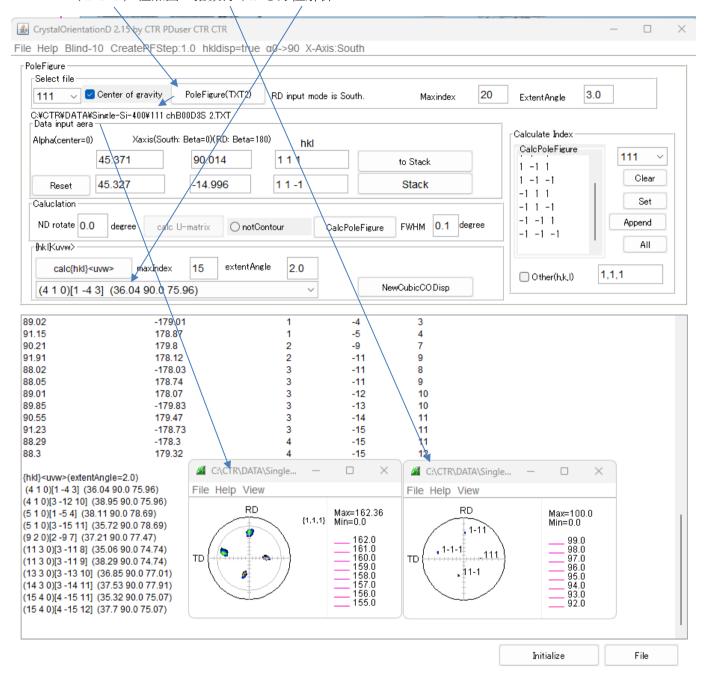
指数付け角度を用いて方位解析を行う。




(014)[-3-41] が計算される。stereoPにて確認 詳細はCrystalOrientationD説明書を参照



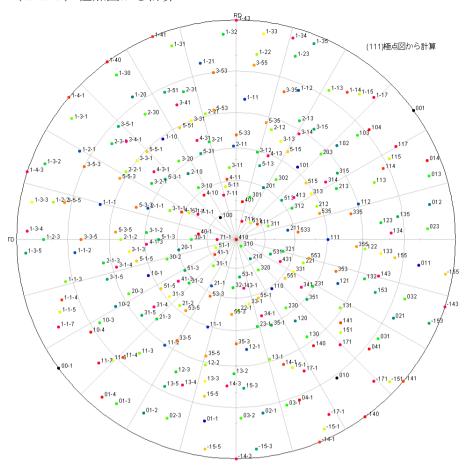
詳細はstereoP説明書を参照


## (014) [-3-41] による極点図、逆極点図、ODF 図

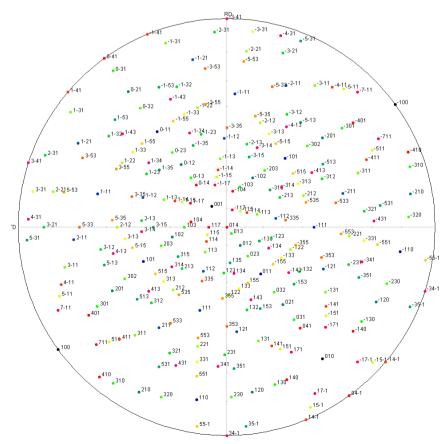


詳細はNewCubicCODisp参照

#### 5. 単独極点図による方位解析


#### (111) 極点図の指数付けから方位解析



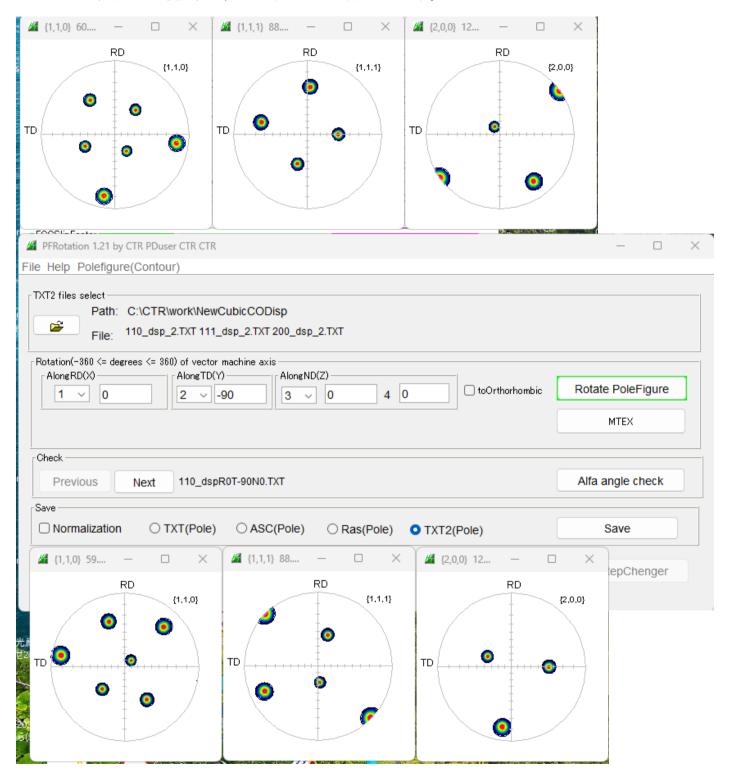

(111) 極点図から方位(410)[1-43] が計算されています。

詳細はCrsytalOrientationD説明書を参照

#### (111)極点図から計算



ラウエカメラデータから計算



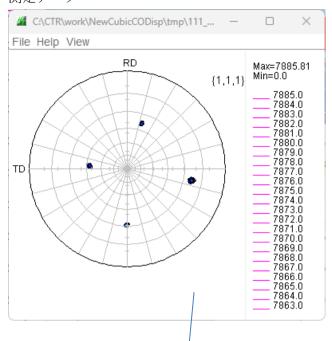

同一結果が得られます。

#### 5.1 極点図の回転

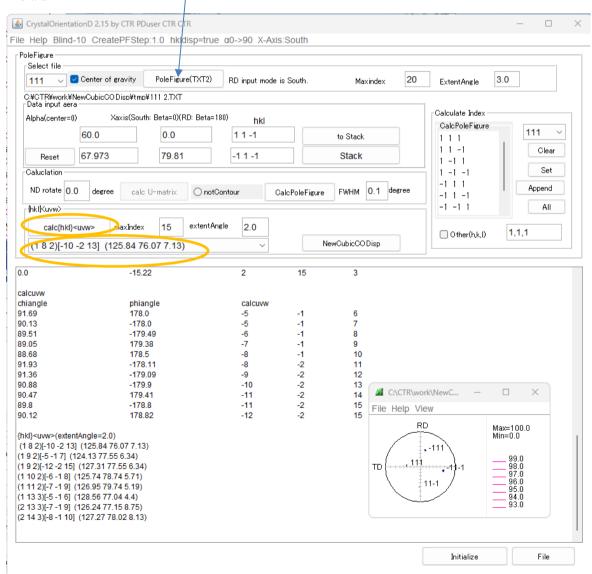
RD 方向から測定した極点図から ND 方向の極点図を計算することがあります。 今回は ND 方向の極点図から RD 方向の極点図を計算する。

TD 軸を-90 度回転で、RD 方向が ND 方向になります。



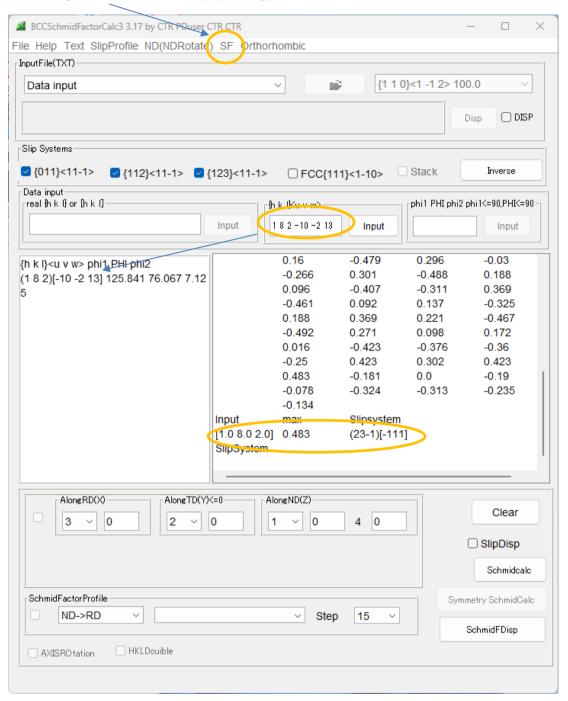

極点図の回転では完全極点図が必要になります。

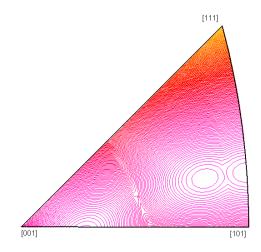
反射法のみの極点図の場合、ODF解析を行い、軸回転で回転極点図が得られます。 LaboTexでサポートされています。


詳細はPFRotation説明書を参照

#### 5. 2 BCC単結晶のSchmid因子計算

#### 測定データ





#### 結晶方位の決定

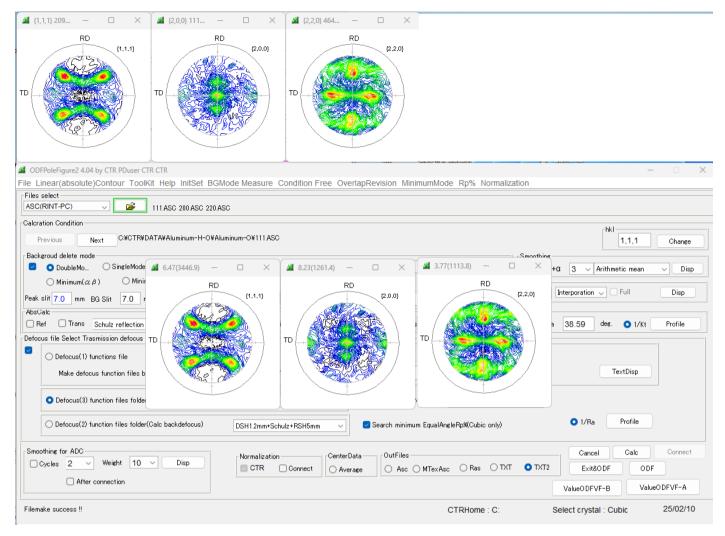


詳細はCrsytalOrientationD説明書を参照

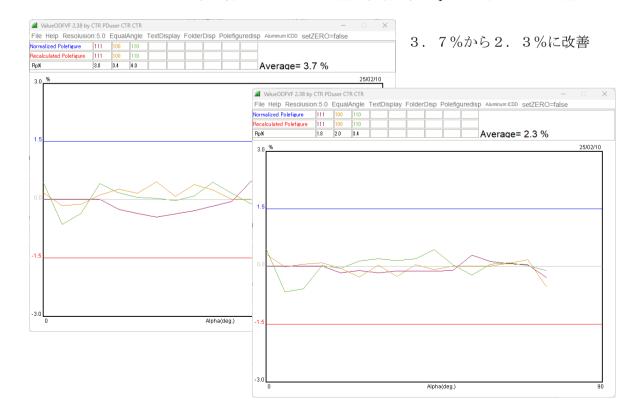
## BCCの引っ張りSchmid因子の計算



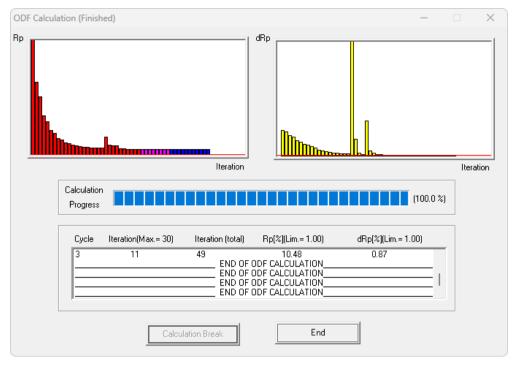



詳細はBCCSchmidfactorCalc説明書を参照

# 計算の詳細 Input

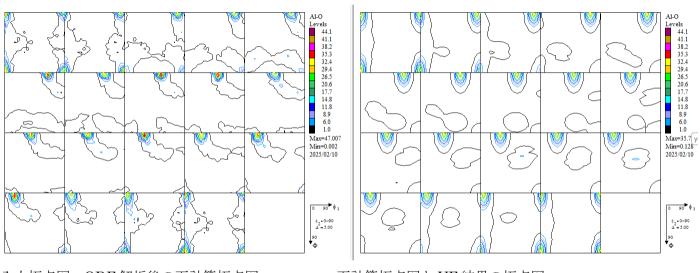

| Input         | max           | Slipsystem   |        |               |        |
|---------------|---------------|--------------|--------|---------------|--------|
| [1.0 8.0 2.0] | 0.483         | (23-1)[-111] |        |               |        |
| SlipSystem    |               |              |        |               |        |
| slip0         | (-211)[111]   | 0.301        | slip21 | (-231)[-1-11] | -0.376 |
| slip1         | (1-21)[111]   | -0.488       | slip22 | (123)[-1-11]  | -0.36  |
| slip2         | (11-2)[111]   | 0.188        | slip23 | (213)[-1-11]  | -0.25  |
| slip3         | (2-11)[-1-11] | 0.096        | slip24 | (321)[-111]   | 0.423  |
| slip4         | (-121)[-1-11] | -0.407       | slip25 | (312)[-111]   | 0.302  |
| slip5         | (112)[-1-11]  | -0.311       | slip26 | (13-2)[-111]  | 0.423  |
| slip6         | (211)[-111]   | 0.369        | slip27 | (23-1)[-111]  | 0.483  |
| slip7         | (-1-21)[-111] | -0.461       | slip28 | (1-23)[-111]  | -0.181 |
| slip8         | (-11-2)[-111] | 0.092        | slip29 | (2-13)[-111]  | 0.0    |
| slip9         | (-2-11)[1-11] | 0.137        | slip30 | (32-1)[1-11]  | -0.19  |
| slip10        | (121)[1-11]   | -0.325       | slip31 | (31-2)[1-11]  | -0.078 |
| slip11        | (1-1-2)[1-11] | 0.188        | slip32 | (132)[1-11]   | -0.324 |
| slip12        | (-321)[111]   | 0.369        | slip33 | (231)[1-11]   | -0.313 |
| slip13        | (-312)[111]   | 0.221        | slip34 | (-123)[1-11]  | -0.235 |
| slip14        | (1-32)[111]   | -0.467       | slip35 | (-213)[1-11]  | -0.134 |
| slip15        | (2-31)[111]   | -0.492       |        |               |        |
| slip16        | (12-3)[111]   | 0.271        |        |               |        |
| slip17        | (21-3)[111]   | 0.098        |        |               |        |
| slip18        | (3-21)[-1-11] | 0.172        |        |               |        |
| slip19        | (3-12)[-1-11] | 0.016        |        |               |        |
| slip20        | (-132)[-1-11] | -0.423       |        |               |        |
|               |               |              |        |               |        |

#### 6. 多結晶試料の方位解析


多結晶から方位解析を行う場合、複数の極点図測定データが必要になります。

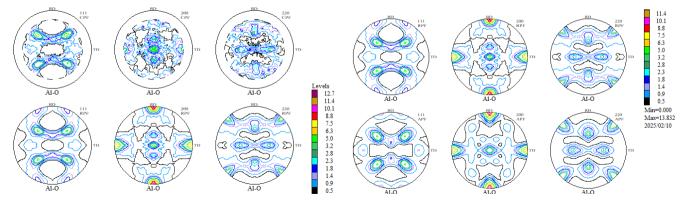


バックグランド除去、計算 d e f o c u s 補正、最小化R p %で測定データを補正




#### 6. 1 極点図から ODF 解析




入力極点図から計算したODF図

VolumeFraction 結果から計算された ODF 図



入力極点図、ODF 解析後の再計算極点図

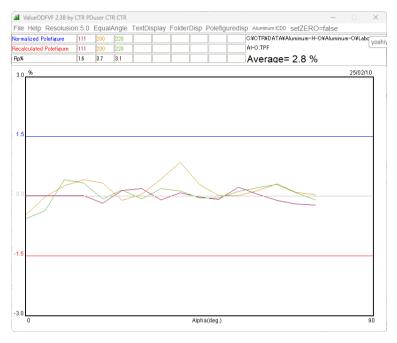
再計算極点図と VF 結果の極点図



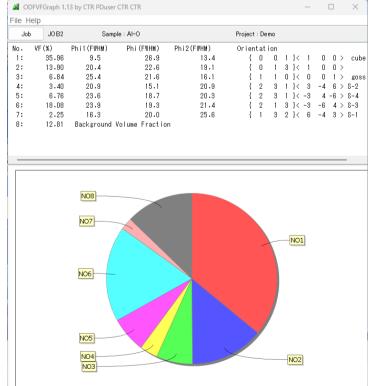
#### 6.2 Rp%の計算

$$RP_{\{hkl\}} = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\left\{ PF_{\text{exp.}} \right\}_{i} - \left\{ PF_{calc.} \right\}_{i}}{\left\{ PF_{\text{exp.}} \right\}_{i}} \right| \cdot 100\%$$

where:


 $RP_{\{hkl\}}$  - relative error for  $\{hkl\}$  pole figure,

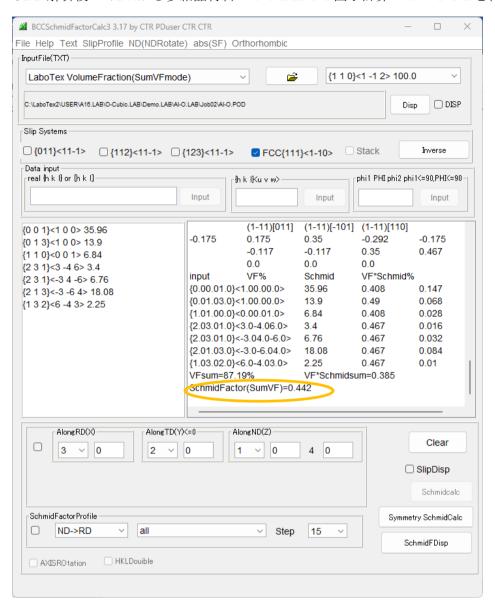
{PF<sub>exp.</sub>}<sub>i</sub> - intensity of experimental (corrected and normalized) pole figure in point i,


point i,  $\left\{ PF_{calc.}\right\} _{i}\text{ - intensity of calculated pole figure in point i,}$ 

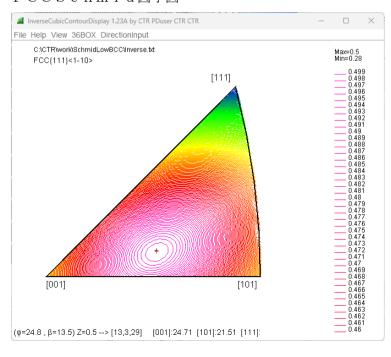
N - number of measured points on pole figure.

入力極点図と ODF 解析後の再計算極点図から




結晶方位の定量 VolumeFraction (VF%) を計算

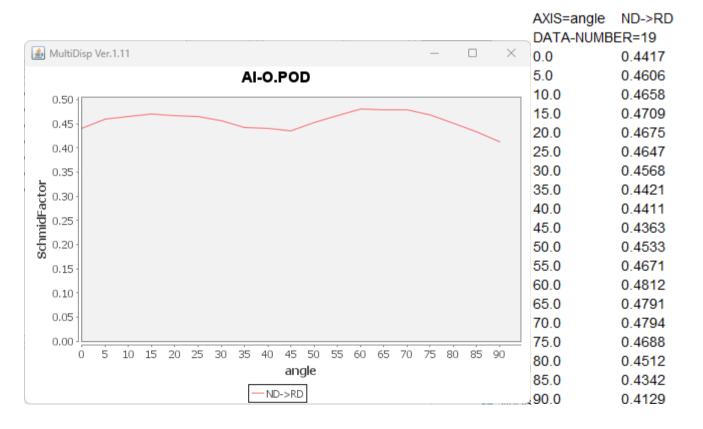



| No. VF(%) Orientation         |      |
|-------------------------------|------|
| 1: 35.96 { 0 0 1 }< 1 0 0 >   | cube |
| 2: 13.90 { 0 1 3 }< 1 0 0 >   |      |
| 3: 6.84 { 1 1 0 }< 0 0 1 >    | goss |
| 4: 3.40 { 2 3 1 }< 3 -4 6 >   | 8-2  |
| 5: 6.76 { 2 3 1 }< -3 4 -6 >  | S-4  |
| 6: 18.08 { 2 1 3 }< -3 -6 4 > | 8-3  |
| 8: 12.81 { 1 3 2 }< 6 -4 3 >  | 8-1  |

#### 6. 3 Schmid 因子計算

ODF 解析後の VF%から多結晶材料の Schmid 因子計算 0.442を得る。




#### FCCSchmid因子図

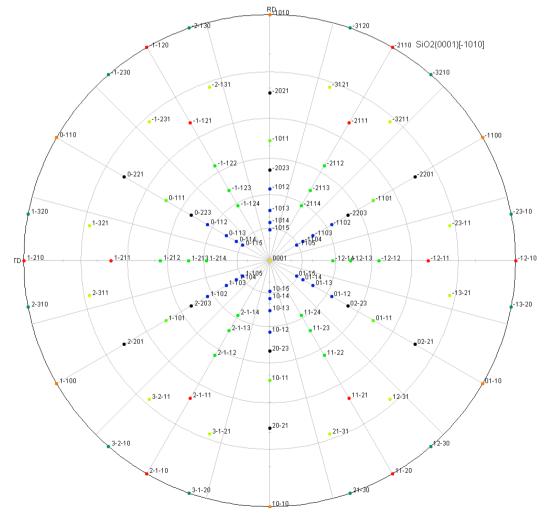


計算の詳細(Schmid 因子は Abs()を選択)

| 11 <del>21,</del> 42 11 | HANDELLING DE LA LIDEO CENTO |           |             |            |        |        |        |        |  |
|-------------------------|------------------------------|-----------|-------------|------------|--------|--------|--------|--------|--|
|                         | input V                      | ′F%       | Schmid      | VF*Schmid% |        |        |        |        |  |
|                         | {0.00.01.0}<1.0              | <0.00.0   | 35.96       | 0.408      | 0.147  |        |        |        |  |
|                         | {0.01.03.0}<1.0              | <0.00.0   | 13.9        | 0.49       | 0.068  |        |        |        |  |
|                         | {1.01.00.0}<0.0              | 0.01.0>   | 6.84        | 0.408      | 0.028  |        |        |        |  |
|                         | {2.03.01.0}<3.0              | -4.06.0>  | 3.4         | 0.467      | 0.016  |        |        |        |  |
|                         | {2.03.01.0}<-3.              | 04.0-6.0> | 6.76        | 0.467      | 0.032  |        |        |        |  |
|                         | {2.01.03.0}<-3.              | 0-6.04.0> | 18.08       | 0.467      | 0.084  |        |        |        |  |
|                         | {1.03.02.0}<6.0              | -4.03.0>  | 2.25        | 0.467      | 0.01   |        |        |        |  |
|                         | VFsum=87.19%                 | 6         | VF*Schmidsu | ım=0.385   |        |        |        |        |  |
|                         |                              |           |             |            |        |        |        |        |  |
| slip0                   | (111)[0-11]                  | 0.408     | 0.327       | -0.408     | -0.35  | -0.35  | 0.35   | -0.175 |  |
| slip1                   | (111)[-101]                  | 0.408     | 0.49        | -0.408     | -0.175 | -0.175 | 0.175  | 0.175  |  |
| slip2                   | (111)[-110]                  | 0.0       | 0.163       | 0.0        | 0.175  | 0.175  | -0.175 | 0.35   |  |
| slip3                   | (-1-11)[011]                 | 0.408     | 0.327       | -0.408     | -0.467 | -0.467 | 0.0    | -0.292 |  |
| slip4                   | (-1-11)[101]                 | 0.408     | 0.245       | -0.408     | -0.35  | -0.35  | 0.0    | -0.175 |  |
| slip5                   | (-1-11)[-110]                | 0.0       | 0.082       | 0.0        | -0.117 | -0.117 | 0.0    | -0.117 |  |
| slip6                   | (-111)[0-11]                 | 0.408     | 0.327       | 0.0        | -0.117 | -0.117 | 0.117  | -0.117 |  |
| slip7                   | (-111)[101]                  | 0.408     | 0.49        | 0.0        | 0.175  | 0.175  | 0.292  | 0.35   |  |
| slip8                   | (-111)[110]                  |           | 0.163       | 0.0        | 0.292  | 0.292  | 0.175  | 0.467  |  |
| slip9                   | (1-11)[011]                  |           | 0.327       | 0.0        | 0.0    | 0.0    | 0.467  | 0.0    |  |
| slip10                  | (1-11)[-101]                 |           | 0.245       | 0.0        | 0.0    | 0.0    | 0.117  | 0.0    |  |
| slip11                  | (1-11)[110]                  | 0.0       | 0.082       | 0.0        | 0.0    | 0.0    | 0.35   | 0.0    |  |
|                         |                              |           |             |            |        |        |        |        |  |

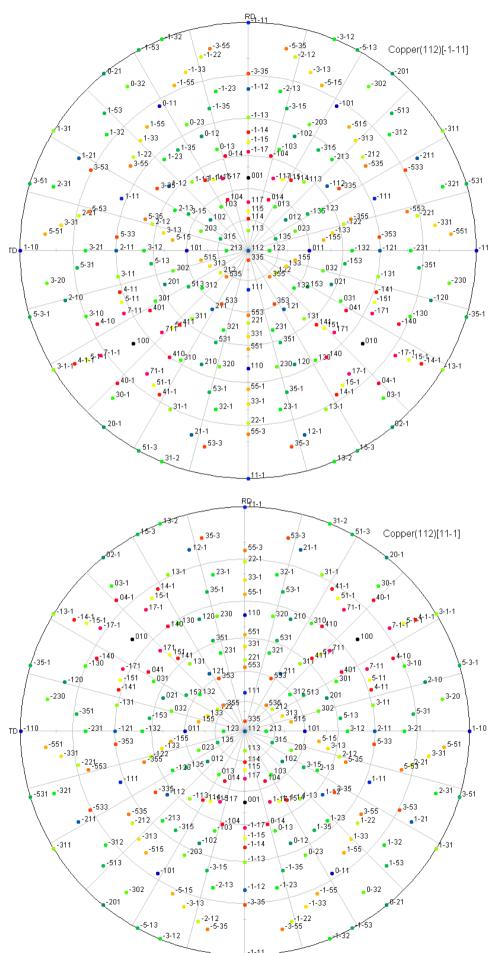
## ND->RD プロファイル




#### 7. 各種方位によるステレオ投影図

CTRソフトウエアのステレオ投影図描画は、Cubic, Tetoragonal, Orthorhombic, Hexagonalに 対応しています。

(hkl)「uvw」を指定でステレオ投影図を描画します。


リガク「X線回折ハンドブック」SiO2のステレオ投影図を描画





複数の極点図を重ね合わせで実現しています。

```
42.14
                                           60.0
                                                      11-22↓
                                                                 24.35
                                                                           240.0
                                                                                    -1-121↓
          30.0
                     20-21↓
                                 42.14
                                           300.0
                                                      1-212↓
21.4
                     2-201↓
                                                                           60.0
                                                                                    11-20↓
                                                                 0.0
          330.0
                                                      2-1-12↓
                                 42.14
                                           0.0
                                                                           300.0
                                                                                     1-210↓
                                                                0.0
21.4
          150.0
                     -2201 \place*
                                                                                    2-1-101
                                                      -2112<sup>↓</sup>
                                 42.14
                                           180.0
                                                                 0.0
                                                                           0.0
21.4
                     02-21↓
          90.0
                                                                                    -2110↓
                                                      -12-12↓
                                                                           180.0
                                 42.14
                                           120.0
                                                                0.0
21.4
                     -2021 \place
          210.0
                                           240.0
                                                      -1-122 \downarrow 0.0
                                                                           120.0
                                                                                    -12-10<sup>↓</sup>
21.4
                                 42.14
                    0-221↓
20-23↓
          270.0
                                                                          240.0
                                                                                    -1-120<sup>↓</sup>
                                 53.62
                                           60.0
                                                      11-23↓
                                                                0.0
49.62
          30.0
                                                      1-213↓
2-1-13↓
                                53.62
                                           300.0
                     2-203↓
49.62
          330.0
                                 53.62
                                           0.0
49.62
          150.0
                     -2203<sup>↓</sup>
                                 53.62
                                           180.0
                                                      -2113↓
49.62
                     02-23↓
          90.0
                                 53.62
                                           120.0
                                                      -12-13↓
                     -2023<sup>↓</sup>
49.62
          210.0
                                 53.62
                                           240.0
                                                      -1-123↓
          270.0
                     0-223↓
49.62
                                 61.08
                                           60.0
                                                      11-24↓
57.46
          30.0
                     10-12↓
57.46
57.46
57.46
                                 61.08
                                                      1-214↓
                                           300.0
          330.0
                     1-102↓
                                61.08
                                           0.0
                                                      2-1-144
          150.0
                     -1102<sup>↓</sup>
                                61.08
                                           180.0
                                                      -2114<sup>↓</sup>
          90.0
                     01-12↓
                                61.08
                                           120.0
                                                      -12-14\black
57.46
          210.0
                     -1012↓
                                           240.0
57.46
          270.0
                     0-112↓
                                 61.08
                                                      -1-124<sup>\(\psi\)</sup>
66.96
                                 38.09
                                           30.0
                                                      10-11↓
                     10-13↓
          30.0
                                 38.09
                                                      1-101↓
                                           330.0
66.96
          330.0
                     1-1034
                     -1103↓
                                 38.09
                                           150.0
                                                      -1101↓
66.96
          150.0
                                           90.0
66.96
                                 38.09
                                                      01-11 \downarrow
          90.0
                     01-13↓
                                 38.09
                                           210.0
                                                      -10111
66.96
          210.0
                     -1013↓
                                 38.09
                                           270.0
                                                      0-1111 \downarrow
66.96
          270.0
                     0-1134
                                                      21-31↓
                     10-14↓
72.31
                                16.5
                                           49.11
          30.0
                                16.5
                                           70.89
                                                      12-31↓
72.31
          330.0
                     1-104↓
72.31
72.31
72.31
                                16.5
                                           310.89
                                                      2-311↓
          150.0
                     -1104\pl
                                16.5
                                           289.11
                     01-14↓
                                                      1-321↓
          90.0
          210.0
                     -1014<sup>↓</sup>
                                16.5
                                           349.11
                                                      3-2-11↓
                                           10.89
72.31
                                16.5
                                                      3-1-21↓
          270.0
                     0-114 \downarrow
75.68
                     10-15↓
                                16.5
                                           169.11
                                                      -3211↓
          30.0
                                16.5
                                           190.89
                                                      -3121↓
75.68
          330.0
                     1-105↓
                                16.5
75.68
          150.0
                    -1105<sup>↓</sup>
                                           130.89
                                                      -23-11↓
                                16.5
                                           109.11
                     01-15↓
                                                      -13-21↓
75.68
          90.0
75.68
          210.0
                     -1015↓
                                16.5
                                           229.11
                                                      -2-131↓
75.68
          270.0
                     0-115↓
                                16.5
                                           250.89
                                                      -1-231↓
                     21-30↓
0.0
          49.11
                                90.0
                                           180.0
                                                      00014
                     12-30↓
                                           30.0
0.0
          70.89
                                0.0
                                                      10-10↓
                    2-310↓
0.0
          310.89
                                0.0
                                           330.0
                                                      1-100 \downarrow
0.0
          289.11
                     1-320↓
                                           150.0
                                 0.0
                                                      -1100\pl
          349.11
                    3-2-10↓
0.0
                                0.0
                                           90.0
                                                      01-10↓
0.0
          10.89
                     3-1-20↓
                                0.0
                                           210.0
                                                      -1010<sup>↓</sup>
0.0
          169.11
                     -3210↓
                                0.0
                                           270.0
                                                      0-110 \downarrow
                                24.35
24.35
0.0
          190.89
                     -3120↓
                                           60.0
                                                      11-21↓
                    -23-10↓
0.0
          130.89
                                           300.0
                                                      1-211↓
0.0
          109.11
                    -13-20↓
                                 24.35
                                                      2-1-11↓
                                           0.0
                     -2-130<sup>↓</sup>
0.0
          229.11
                                           180.0
                                 24.35
                                                      -2111<del>↓</del>
0.0
          250.89
                     -1-230↓
                                 24.35
                                           120.0
                                                      -12-11↓
```



ND 軸 1 8 0 度の回転