GOODFDisplay(V3)による

Export したODF図から方位密度計算

2022年06月07日 *HelperTex Office* 各種ODFのExportファイルをGPODFDisplay(V3)ソフトウエアに読み込み 所望の方位密度計算を行う場合、計算方法として2種類あります。

例えばS方位のeuler角度(58.97,36.69,63.43)の場合

MewCubicCODisp 1.18ST[22/12/31] by CTR -		×							
File Help Symmetry Special Index									
Miller Indices									
(hkl)[uvw] 2 ~ 1 ~ 3 ~ -3 ~ -6 ~ 4 ~	Ca	alc							
Euler Angle									
(p1 P p2) <=90 58.9799 36.6992 63.4349 Calc									
Present Condition Euler Angle 58.9799 36.6992 63.4349 Double Miller Indices 0.5345 0.2673 0.8018 -0.3841 -0.7682 0.5121									
DISP Position 10 V Disp size 400 V BG color Black V Line size 2.0 V	DISP Minus								

ODF角度間隔5度ステップの場合

格子点位置(60,35,65)の方位密度

ODF角度間隔1度ステップの場合(euler角度の整数化)

ODF5度から1度のODF図を作成

格子点位置(59,37,63)の方位密度

euler角度を実数で計算する場合

(58.9799,36.6992,63.4349)の方位密度

GPODFDisplayでは

5 度ステップをV1

1 度ステップをV 2

実数計算をV3として計算しています。

この計算方法による方位密度を考えてみます。

LaboTexではマウス位置近傍の方位密度計算がサポートされています。 しかし、5度間隔のODF図から得られる値は正確ではありません。 正確な方位密度はステップ間隔の狭いODF図から得られますが、 以下の説明では5度間隔として計算を行ってみます。

LaboTexにおけるS方位密度計算(5度間隔)

ODF図作成

最大方位密度は56.962である。

LaboTexでODF図上をマウスクリックで最大方位密度56.962に対し S方位は41.172が計算されている。

この計算は、5度間隔のODFデータから実数のeuler角度から補間された値と考えられます。

実際の最大値は(60,35,60)に得られる。

<u>14</u>	GPODFDisplay(V3) 3.01T[22/12/31] by CTR				_	-		×
File	Aluminum View Search 7.0,15,false Help Fiber ODF	Da	taBase	Resolution	Rand	oms	earch	DFF
	LaboTex ODF Export (PHI1 PHI2 PHI ODF)(Hexa:AorB)	>						
	LaboTex(Triclinic->Orthorombic)							
	TexTools ODF Export (Hexa:A-Type)	>						
	StandardODF (ODF15,ODF15.bin)							
	NewODF(f1 F f2 Value)	>						
	popLA (Hexa: AType)	>						
	DhmsBunge (*.EOD)							
	MTEX(f1 F f2 Value)	>						
	MTEX(Triclinic(1/4cut) to Orthorhombic)	>						
	MTEX(Triclinic to Orthorhombic(Average))	>						
	EBSD-OIM(f1 F f2 Value)							
	EBSD-OIM(Triclinic to Orthorhombic)							
	Vector	>						
	ATEX(Triclinic)	>						
	ATEX(Triclinicv(1/4) to Orthorhombic)	>						
	Save	>						
	TmpfileDisp							
	Version	>	Vers	ion1				
	Exit		Vers	ion2				
			Vers	ion3				
22/06	/14							

Tytle表示切替(実数、1deg, 5deg)を行う。

	(60,	35,65)	の格子点方位	密度	
# TextDisplay 1.14S C:¥	CTR¥work¥ODFDisp	lay¥ODEtxt			
File Help					
Orientation	φ1	Φ	φ2	ODE	
(2 1 3)[-3 -6 4]	58.98	36.7	63.43	41.55	
(2 3 1)[3 -4 6]	52.87	74.5	33.69	41.55	
(1 3 2)[6 -4 3]	27.03	57.69	18.43	39.62	
MAXODF=56.96	MINIODF=	=0.5 (Weight=	0 Cycle=1)		
1 度格子点から計算	(V 2) 🌌 GPO	DFDisplay(V2) 3	.00T[22/12/31] b	y CTR	
	(59,	37,63)	の格子点方位	密度	
# TextDisplay 1.14S C:¥	CTR¥work¥ODFDisp	olay¥ODF.txt			
File Help					
Orientation	φ1	Φ	φ2	ODE	
0.0.410.4.01	50.07	745	00.00	00.00	

5度の格子点から計算(V1) 🎽 GPODFDisplay(V1) 3.00T[22/12/31] by CTR

File Help				
Orientation	φ 1	Φ	φ2	ODE
(2 3 1)[3 -4 6]	52.87	74.5	33.69	36.09
(2 1 3)[-3 -6 4]	58.98	36.7	63.43	34.69
(1 3 2)[6 -4 3]	27.03	57.69	18.43	26.31
MAXODF=56.96	MINIODF=	=0.5 (Weight=0) Cycle=1)	

e u k e r 角度実数から計算 🎽 GPODFDisplay(V3) 3.00T[22/12/31] by CTR

(58.9799,36.6992,63.4349)の方位密度

φ1	Φ	φ2	ODF(real)
58.98	36.7	63.43	36.72
52.87	74.5	33.69	34.14
27.03	57.69	18.43	26.32
MINIODF=0.5 (Weight=0 Cycle=1)			
	φ1 58.98 52.87 27.03 MINIODF=0.5	φ1 Φ 58.98 36.7 52.87 74.5 27.03 57.69 MINIODF=0.5 (Weight=0 Cy)	φ1 Φ φ2 58.98 36.7 63.43 52.87 74.5 33.69 27.03 57.69 18.43 MINIODF=0.5 (Weight=0 Cycle=1) 1000000000000000000000000000000000000