FCCSchmidCalc

BCCSchmidCalcソフトウエアの動作

2023年01月10日 *HelperTex Office* 概要

材料の加工性としてSchmidFactorを求めることがあります。

CTRソフトウエアでは、FCC, BCC, HCP向けにSchmid因子計算がサポート されています。

FCCはBCCソフトウエアに含まれています。

以下に操作方法と手計算を説明します。

BCCSchmidCalcソフトウエア

le Help Text SlipProfile InputFik(TXT) aboTex VolumeFraction(SumVFmode)	BCCSchmidFactorCalc3 3.05T[23/04/30] by CTR	- 🗆 X
inputFile(TXT) LaboTex VolumeFraction(SumVFmode) Slip Systeme 0 (011)<11-1> (112)<11-1> (123)<11-1> FCC(111)<1-10> Inverse Data input th k () or b k () ND Imput th k () or b k () Imput th k () or b k () Imput th k ()	ile Help Text SlipProfile	
Laborex volumer racidition mode) Implementation (summinder) Disp Disp Slip Systems Implementation (summinder) Implementation (summinder) Implementation (summinder) Disp DIsp Slip Systems Implementation (summinder) Implementation (summinder) Implementation (summinder) Disp DIsp Imput Imput Imput Imput<	InputFile(TXT)	1.2> 100.0
Disp DIsp Slip Systems (011)<11-1> (112)<11-1> (123)<11-1> FCC(111)<1-10> Inverse Data input (h k lj 		
Slip Systems @ {011}<11-1> [112]<11-1> [123]<11-1> FCC{111}<1-10> Inverse Data input the life of the life ND Input the life of the life ND Input the life of the life (the life of the lif		Disp DISP
{011}<11-> {112}<11-1> {112}<11-1> FCC(111)<1-10> Inverse Data input th k () or () k () Input th k () or () k () Input th k () input input	-Slip Systems	
Data input th k (f or (h k ()) ND (h k () < u v w> VF(%) (h k () < u v w> VF(%) Along RD(X) Along RD(X) <td>✓ {011}<11-1> □ {112}<11-1> □ {123}<11-1> □ FCC{111}<1-10></td> <td>Inverse</td>	✓ {011}<11-1> □ {112}<11-1> □ {123}<11-1> □ FCC{111}<1-10>	Inverse
ND Input Input Input [1 k] <u v="" w=""> VF(%) (1 k]<u v="" w=""> VF(%) (1 k] (1 k]</u></u>	Data input	
(h k l) <u v="" w=""> VF(%) Along RD(X) Along RD(X) 3 \ 0 2 \ 0 1 \ 0 6 SchmidFactorProfile ND->RD \ Along RD(X) HKLDouible</u>	ND Input Input	Input
Along RD(X) Along TD(Y)<=0 3 ~ 0 2 ~ 0 1 ~ 0 4 0 SchmidFactorProfile SchmidCalc ND->RD Step 1 ~ AXISRO tation HKLDouible		
SchmidFactorProfile ND->RD SchmidCalc AXISRO tation HKLDouible	Along RD(X) 3 ~ 0 2 ~ 0 1 ~ 0 4 0	SlipDisp
SchmidFactorProfile ND->RD AXISRO tation HKLDouible Symmetry SchmidCalc SchmidFDisp		Schmidcalc
ND->RD Step SchmidFDisp AXISRO tation HKLDouible	SchmidFactorProfile	Symmetry SchmidCalc
AXISRO tation I HKLDouible	□ ND->RD ∨ Step 1 ∨	SchmidFDisp
	AXISRO tation I HKLDouible	

盲	+算する方位を入力する。	Datainput の選択		
	BCCSchmidFactorCalc3 3.05T[23/04/30)] by CTP		
F	File Help Text SlipProfile	/		
	InputFile(TXT)			
	LaboTex VolumeFraction(SumVF	mode) v	2	
	Data input			
	LaboTex VolumeFraction(100%V	FMode)		
	Miller Notation {hki} <uvv>-table(T</uvv>	-XT)		
	LaboTex VolumeEraction(SumVE	mode)	_	
ł	f C C の選択 Slip Systems			1
				Turner
	□ {011}<11-1> □ {112}<11-1>	□ {123}<11-1>	11}<1-10>	Inverse
ナ	5位の入力 30895を	·入力しInput		
	Data input			
	OND 30 8 95 Input		Input	
ŧ	十算開始 Data input			
T T T	十算開始 Data input 作 k If or [h k I]	-{h k lKu v w>	phi1 PHI phi2	
	+算開始 Data mput th k I} or [h k I] ND 30 8 95 Input	h k IKu v w>	phi1 PHI phi2	Input
Ē	+算開始 → Lata input → h k I} or Ih k II → ND 30 8 95 Input Ch k IJ<	th k IKu v w>	phi1 PHI phi2	Input
言 	+算開始 Data input	th k IKu v w> Input Input max [30 8 95] 0.493 slip0 (1111)[0.11]	Slipsystem (1-11)[011]	Input
言 	+算開始 Data input th k I} or th k II ND 30 8 95 Input {h k I} <u v="" w=""> phi1 PHI phi2 {30 8 95}</u>	h k IKu v w> Input [30 8 95] 0.493 slip0 (111)[0-11] slip1 (111)[-101]	Slipsystem (1-11)[011]	Input
書 	t9000000 +算開始 Data input th k If or Ih k II ND 30 8 95 Input [h k I] <u v="" w=""> phi1 PHI phi2 [30 8 95]</u>	h k IKu v w> Input In	Slipsystem (1-11)[011]	Input
言 	+算開始 Data input th k I} or th k I] ND 30 8 95 Input (h k I] <u v="" w=""> phi1 PHI phi2 (30 8 95)</u>	h k IKu v w> Input Input [30 8 95] 0.493 slip0 (111)[0-11] slip1 (111)[-101] slip2 (111)[-110] slip3 (-1-11)[011] slip4 (-1.11)[101]	Slipsystem (1-11)[011]	Input
書 	t900000 +算開始 Data input th k I} or [h k I] ND 30 8 95 Input [h k I] <u v="" w=""> phi1 PHI phi2 [30 8 95]</u>	h k IKu v w> Input [30 8 95] 0.493 slip0 (111)[0-11] slip1 (111)[-101] slip2 (111)[-10] slip3 (-1-11)[011] slip4 (-1-11)[101] slip5 (-1-11)[-110]	Slipsystem (1-11)[011]	Input
言 	+算開始 Data input th k If or Di k II ND 30 8 95 Input (h k I} <u v="" w=""> phi1 PHI phi2 (30 8 95)</u>	Input max [30 8 95] 0.493 slip0 (111)[0-11] slip1 (111)[-101] slip3 (-1-11)[011] slip5 (-1-11)[101] slip5 (-1-11)[-110]	Slipsystem (1-11)[011]	Input
言 { { {	t900000) +算開始 Data input th k I} or [h k I] ND 30 8 95 Input {h k I} <u v="" w=""> phi1 PHI phi2 {30 8 95}</u>	h k IKu v w> Input In	Slipsystem (1-11)[011]	Input
言 { { 	tooosoj +算開始 Data input th k I} or Ih k II ND 30 8 95 Input [h k I] <u v="" w=""> phi1 PHI phi2 [30 8 95]</u>	Input max [30 8 95] 0.493 slip0 (111)[0-11] slip1 (111)[-101] slip2 (111)[-110] slip3 (-1-11)[011] slip5 (-1-11)[-110] slip6 (-111)[-110] slip7 (-111)[0-11] slip8 (-111)[101] slip9 (1-11)[011]	Slipsystem (1-11)[011]	Input
言 [] { {	t900000 +算開始 Data input th k I} or [h k I] ND 30 8 95 Input [h k I] <u v="" w=""> phi1 PHI phi2 [30 8 95]</u>	Input Input Input max [30 8 95] 0.493 slip0 (111)[0-11] slip1 (111)[-101] slip2 (111)[-110] slip3 (-1-11)[011] slip5 (-1-11)[101] slip6 (-11)[0-11] slip7 (-111)[101] slip8 (-111)[101] slip9 (1-11)[011] slip10 (1-11)[-101]	Slipsystem (1-11)[011]	Input
言 	tooosoj +算開始 Data input th k I} or Ih k I] ND 30 8 95 Input [h k I] <u v="" w=""> phi1 PHI phi2 [30 8 95]</u>	Input max [30 8 95] 0.493 slip0 (111)[0-11] slip1 (111)[-101] slip2 (111)[-101] slip3 -1-11)[011] slip4 (-1-11)[011] slip5 (-111)[-110] slip6 (-11)[0-11] slip7 (-111)[101] slip8 (-111)[101] slip9 (1-11)[101] slip10 (1-11)[-101] slip11 (1-11)[110]	Slipsystem (1-11)[011]	Input
言 / / / / / / / / / / / / / / / / / / /	t900000 +算開始 Data input th k I} or th k II ND 30 8 95 Input (h k I} <u v="" w=""> phi1 PHI phi2 (30 8 95)</u>	Input max [30 8 95] 0.493 slip0 (111)[0-11] slip1 (111)[-101] slip2 (111)[-110] slip3 (-1-11)[011] slip5 (-1-11)[-110] slip6 (-11)[0-11] slip7 (-111)[101] slip8 (-111)[101] slip10 (1-11)[101] slip10 (1-11)[101] slip10 (1-11)[-101] slip11 (1-11)[110]	Slipsystem (1-11)[011]	
	t9000000 +算開始 Data input th k I} or th k II ND 30 8 95 Input (h k I] <u v="" w=""> phi1 PHI phi2 (30 8 95)</u>	Input max [30 8 95] 0.493 slip0 (111)[0-11] slip1 (111)[-101] slip2 (111)[-110] slip3 (-1-11)[011] slip5 (-1-11)[101] slip6 (-11)[0-11] slip7 (-111)[101] slip8 (-111)[101] slip9 (1-11)[101] slip10 (1-11)[-101] slip11 (1-11)[110]	Slipsystem (1-11)[011]	
言 	+算開始 Uata input th k IJ or Ih k IJ ND 30 8 95 Input [h k I] <u v="" w=""> phi1 PHI phi2 [30 8 95] AlongRD(X) AlongTD() 3 2 0 2 2</u>	Input max [30 8 95] 0.493 slip0 (111)[0-11] slip1 (111)[-101] slip2 (111)[-101] slip3 (-1-11)[011] slip6 (-11)[0-11] slip6 (-11)[0-11] slip7 (-111)[101] slip8 (-111)[011] slip9 (1-11)[011] slip10 (1-11)[101] slip11 (1-11)[101] slip11 (1-11)[101]	Slipsystem (1-11)[011]	Input

最大値は

nputData {h k l}<u v w> phi1 PHI phi2 {30 8 95}

最小値は slip2 (111)[-101]である。

手計算

最大値 (1-11)[011] 最小値 (111)[-110] Schmid因子 cosφ*cosθ

$$\cos\phi = \frac{h_1h_2 + k_1k_2 + l_1l_2}{\sqrt{(h_1^2 + k_1^2 + l_1^2)(h_2^2 + k_2^2 + l_2^2)}}$$
$$\cos\theta = \frac{u_1u_2 + v_1v_2 + w_1w_2}{\sqrt{(u_1^2 + v_1^2 + w_1^2)(u_2^2 + v_2^2 + w_2^2)}}$$

最大値(1-11)[011]

(h1,k1,l1)=(1,-1,1) (u1,v1,w1)=(0,1,1) (h2,k2,l2)=(30,8,95) (u2,v2,w2)=(30,8,95)

k1	11	u1	vl	w1
-1	1	0	1	1
k2	12	u2	√2	w2
8	95	30	8	95
0.6759				
0.7305				
0.4937				
	k1 k2 0.6759 0.7305 0.4937	k1 1 -1 1 k2 2 8 95 0.6759 0.7305 0.4937	I1 u1 -1 1 0 k2 I2 u2 8 95 30 0.6759	K1 I1 u1 v1 -1 1 0 1 k2 I2 u2 v2 8 95 30 8 0.6759

最小値 (111)[-110]

(h1,k1,l1)=(1,1,1) (u1,v1,w1)=(-1,0,1) (h2,k2,l2)=(30,8,95) (u2,v2,w2)=(30,8,95)

h1	k1	11	u1	vl	w1
1	1	1	-1	1	0
h2	k2	12	u2	√2	w2
30	8	95	30	8	95
cosΦ	0.7683				
cosθ	-0.1560				
$\cos\phi\cos\theta$	-0.1199				

ODF 解析後方位の決定

この部分をクリック

<mark>₩=</mark> U - 360.000 <mark>Φ=</mark> 0	I+ 90.000 <mark>₩2</mark> = 0+ 90.000
Approx. Miller Indices	Euler Angles
(589)[-521] (958)[1-52] (895)[21-5]	[165.38, 46.35, 32.01] [27.54, 52.15, 60.95] [278.72, 67.45, 41.63]

どの方位も ODF 図上の強い部分であること確認する。

VolumeFrcation決定のため

{589} <-521>をデータベースに登録

-	Labole	ex - IND (User					
ile	Edit	View	Calculation	Analysis	Modelling	Help		
) ei		Ori Sho Cho Ma	entations Ana ow PF(s) or/ar oose (HKL)[U\ x. Value of Mi	ilysis nd ODF(s) /W] iller Indice	Value(s)	
				Ori	entations Typ	e Databas	e	
-		C	>	Sor Sho Sho Aut	t of Orientatio ow of Next Or ow of Previou to	ons from E ientation f s Orientati	Database by PF or from Database ion from Database	ODF Values
		٢) 🔿	Nea Qu	ar (HKL)[UVW antitative Ana] Orientat Ilysis - Inte	ions (Right Mouse egration Method	e Click)
			۲	Qu	antitative Ana	ilysis - Mo	del Functions Me	thod
10	· · · · · · ·	T	D				\sim	

Help	-		
	🕂 V J 🛦 🐼 N A	R 🛞 i 🔺 2D 3D 🥙 🗄	#
i5.38 → Φ= 46.35 → № = 32	2.01 🕂 HKL (5 8 9) UVW [-5 2 1]	_
Quantitative Analysis - Model Functions	Method - Project: Demo Samp	le:Ref Job:1	×
Crystal Symmetry O (Cubic)	ple Symmetry	id Cells for Output ODF	Step 0.50 Diagram Range +/- 45.0
100.0%	100.0% Compo	100.0%	Component No 1.
0.50 FYHM ²⁴ = 10.0	45.0 0.50 FWHM	2 = 10.0 45.0 0. БУНМФ БУНМ % Уоlume	50 FWHM 12 = 10.0 45.0 Show Svm. Ea.
1 { 5 8 9}<-5 2 1>	▼ ▼ Gauss ▼ 10.0	10.0 10.0 99 ÷	
2 {323} 1-31>	🖵 🗖 Gauss 🖵 10.0	10.0 10.0 30 🕂	Calculation Mode
3 { 5 2 5}× 1 -5 1>	Gauss V 10.0		C Automatic C Manual
5 { 2 3 3 × 0 1 -1 >	Gauss - 10.0		Max Iteration Number : 1 000
6 {112}110>		10.0 10.0 10 🛨 ;	6 Max. Fit Error % (*1000) : 100 ÷
7 {1 1 0}< 0 0 1> goss	Gauss 🖌 10.0		k Iteration :
9 {0 0 1} 1 0 0> cube			* _% Fit Error% (*1000) :
10 { 1 1 0 }< 1 -1 2 > brass	✓ Gauss ✓ 10.0	10.0 10.0 10 😅	 Fit Calculation Progress
Max. Linearity	tabase (sort by 💌 Save Currer	t Set Background 1 2	6
Fix Initial Parameters Fix Angles	Fix Fractions Start Volur	ne Fraction Calculation	w Report Exit and Show Exit

_

Fix Initial Parameters で {589} <-521>のみを選択し Fix Initial Parameters 再度選択

Crystal S <mark>O</mark>	ymmetry (Cubic)	Sample :	B ymm riclinia	etry		G	id Cells for I	Dutput ODF 5.0×5.	0	Ŧ	Step 0.50 Diagram Range +/- 45.0
00.0%	Component N	• 1.	10	00.0%		Compo	nent No 1		100.0%		Component No 1.
0.5	50 F¥HM (%) = [1	0.0	45.0	0.5	50	<mark>F₩HM</mark> ⊈	P = 10.0	45	.0	, 0.50	FYHM 월 = 10.0 45.0
No	Texture Compone	nt	On	Distribu	tion	<mark>гунм Ф</mark>	г₩нмФ	F¥HM 🖗	Volume Fraction		Show Sym. Eq.
1 { 5	589}<-521>	-		Gauss	$\overline{\mathbf{v}}$	10.0	10.0	10.0	99	%	{ 5 8 9}<-5 2 1> ▼
2 { 3	3 2 3 }< 1 -3 1 >	Ŧ		Gauss	Ŧ	10.0	10.0	10.0	30	%	Calculation Mode
3 { 5	525}<1-51>	-		Gauss	-	10.0	10.0	10.0	11	%	 Automatic Manual
4 { 1	13 <> 1 -1 0 >	-		Gauss	-	10.0	10.0	10.0	10	%	
5 { 2	233}<01-1>	~		Gauss	-	10.0	10.0	10.0	10	%	Max. Iteration Number : 1,000 🛨
6 { 1	12}<1-10>	~		Gauss	-	10.0	10.0	10.0	10	%	Max. Fit Error % (*1000) : 📔 100 🕂
7 { 1	1 0 }< 0 0 1 > ga	- 28		Gauss	-	10.0	10.0	10.0	10	%	Iteration :
8 { 1	10 \< 1 -1 1 >	v		Gauss	-	10.0	10.0	10.0	10	%	EX E
9 { () 01}<1 00> cu	be 🔻		Gauss	-	10.0	10.0	10.0	10	%	FILEHUI%(1000).
10 { 1	10}<1-12>br	=ss <u></u>		Gauss	-	10.0	10.0	10.0	10	%	Fit Calculation Progress
 Max. Linearity 	Orientation Set Se	et from Databa	ise (so	ort by 💌		Save Currer	it Set	ackground	1	%	

数回計算する

BCCSchmidCalc

先ほどのPDFを選択

	BCCS	chmidFactorCalc3	3.05T[23/04/30] b	y CTR				_	
F	ile Hel	p Text SlipPro	ofile						
Γ	InputFile	(TXT)							
	Labo	Tex VolumeFra	action(SumVFm	ode)	~	🗃 👔	1 0}<1 -1 2> 1(0.00	~
		▲ 開く							×
	Slip Sy	ファイルの場所(I):	📒 Job02				🕗 🤌 📂 🛄 -		-
2	Datair _{h k l]	していたす… 最近使った項…	Ref.POD						
-		デスクトップ							
-		: K¥1X7F							
1Þ		PC							
		9	L ファイル名(N):	Ref.POD					
		ネットワーク	ファイルのタイプ(T):	*.PO D,*pod,*.Po	bd		~	<u>ب</u>	U U 肖

{589} <-521>が取り込まれます・

BCCSchmidFactorCalc3 3.05T[23/04/30] by CTR	- 🗆 X
File Help Text SlipProfile	
_InputFile(TXT)	
LaboTex VolumeFraction(SumVFmode) V 2 {1 1 0}<1 -1 2	> 100.0 ~
C:\LaboTex2\USER\Nb.LAB\O-Cubic.LAB\Demo.LAB\Ref.LAB\Job02\Ref.POD	Disp 🗆 DISP
Slip Systems	Inverse
Data input	
Image: Second	Input
{5 8 9}<-5 2 1> 99 95	

	89}<-521>9	99.95	in {5 VI Si	put 5.08.09.0}< Fsum=99.9 chmidFacto	0.447 0.316 0.234 VF% -5.02.01.0> 15% or(SumVF)=0.4	0.12 0.12 0.207 Schmid 99.95 VF*Schmidst 149	0.272 0.027 0.136 VF*Schmid% 0.449 µm=0.449	0.174 0.256 0.449		
			SI SI SI SI SI SI SI	ip0 ip1 ip2 ip3 ip4 ip5 in6		(01-1)[111] (-101)[111] (1-10)[111] (0-1-1)[-1-11] (101)[-1-11] (-110)[-1-11] (01-1)[-111]]			
	Along RD(AlongTD(Y)<=0		ongND(Z)	4 0	Symmet	Schmidcalc)	
	SchmidFactorPro	D ~	all		 ✓ Step 	1 ×	Sc	hmidFDisp		
		S c	hmidC	Calc						
TextDisplay	1.14S C:\CTR\wo	rk\SchmidLowB	CC\SchmidFctor.	txt					_	0 X
TextDisplay File Help mputData {5 8 9}<-5 2 12	1.14S C:\CTR\wo	rk\SchmidLowB	BCC\SchmidFctor.	txt					_	
TextDisplay File Help mputData {5 8 9}<-5 2 1: Calc Schmid's {5.08.09.0}<-5 slip0 -0.053	1.14S C:\CTR\wo > 99.95 Factor 5.02.01.0> rota slip1 : 0.211	rk\SchmidLowB ation (2[0.0],1 slip2 -0 158	ICC\SchmidFctor 10.0],0[0.0]3[0 slip3 0 163	0.0]) slip4 -0 134	slip5 -0 029	slip6 -0.029	slip7 0.403	slip8 -0.375		Slip1(0.058
ItextDisplay File Help InputData (5 8 9)<-5 2 1:	1.14S C:\CTR\wo > 99.95 Factor 5.02.01.0> rota slip1 0.211 VF% 5.02.01.0> % (SumVF)=0.44	rk\SchmidLowB ation (2[0.0],1 slip2 -0.158 Schmid 99.95 VF*Schmidsu 19	CC\SchmidFctor [[0.0],0[0.0]3[0 slip3 0.163 VF*Schmid% 0.449 µm=0.449	0.0]) slip4 -0.134 0.449	slip5 -0.029	slip6 -0.029	slip7 0.403	slip8 -0.375		slip1(0.058
ItextDisplay File Help mputData (5 8 9)<-5 2 1:	1.14S C:\CTR\wo > 99.95 Factor 5.02.01.0> rota slip1 0.211 VF% 5.02.01.0> % (SumVF)=0.44	rk\SchmidLow8 ation (2[0.0],1 slip2 -0.158 Schmid 99.95 VF*Schmidsu 99 (01-1)[111] (-101)[111] (1-10)[111]	ICC\SchmidFctor. I[0.0],0[0.0]3[0 slip3 0.163 VF*Schmid% 0.449 Im=0.449	0.0]) Slip4 -0.134 0.449	slip5 -0.029	slip6 -0.029	slip7 0.403	slip8 -0.375		slip1(0.058
ItextDisplay File Help mputData (5 8 9)<-5 2 1:	1.14S C:\CTR\wo > 99.95 Factor 5.02.01.0> rota slip1 \$ 0.211 VF% 5.02.01.0> \$ % (SumVF)=0.44	rk\SchmidLow8 ation (2[0.0],1 slip2 -0.158 Schmid 99.95 VF*Schmidsu (01-1)[111] (-101)[111] (1-10)[111] (0-1-1)[-1-11] (0-1-1)[-1-11] (01-1)[-111] (01-1)[-111]	CC\SchmidFctor. [[0.0],0[0.0]3[0 slip3 0.163 VF*Schmid% 0.449 Im=0.449]	0.0]) slip4 -0.134 0.449	slip5 -0.029	slip6 -0.029	slip7 0.403	slip8 -0.375		slip1C 0.058
ItextDisplay File Help mputData (5 8 9)<-5 2 1:	1.14S C:\CTR\wo > 99.95 Factor 5.02.01.0> rota slip1 \$ 0.211 VF% 5.02.01.0> \$ % (SumVF)=0.44	ation (2[0.0],1 slip2 -0.158 Schmid 99.95 VF*Schmidsu (01-1)[111] (-101)[111] (0-1-1)[-1-11] (0-1-1)[-1-11] (01-1)[-1-11] (01-1)[-111] (01-1)[-111] (0-1-1)[-111] (0-1-1)[1-11] (-101)[1-11] (-101)[1-11]	ICC\SchmidFctor. I[0.0],0[0.0]3[0 slip3 0.163 VF*Schmid% 0.449 Im=0.449]	0.0]) slip4 -0.134 0.449	slip5 -0.029	slip6 -0.029	slip7 0.403	slip8 -0.375	slip9 -0.245	Slip1C 0.058