DefocusCal cプログラム

Ver.1.51M

極点解析を行う場合、光学系の調整は重要です。

+分に調整されている事を確認した上で、各種補正が適正に行えるようになります。 本プログラムは、X線光学系の補正を行う為のファイル作成補助を行います。

> 2016年09月04日 *HelperTex Office* http://www.geocities.jp/helpertex2

修正履歴

- * @version 1.0
- * version 1.35 スリット幅を前回計算した値を表示する。
- * version 1.36 Frame1 に前回選択した光学系を初期値として表示
- * version 1.37 データ点数16以外も対応
- * version 1.380 2009/03/10 Help 対応
- * version 1.400 2009/11/12 MENBER=false
- * version 1.402 2010/01/06 コメントを外す
- * version 1.410 2010/02/08 多項式近似ファイルを直接作成
- * version 1.411 2010/02/09 getHome()対応
- * version 1.412 2010/02/16 Clip 追加
- * version 1.413 2010/09/17 時間不正利用防止
- * version 1.414 2010/09/26 時間不正利用防止設定ミス修正
- * version 1.415 2011/04/04 autoclip 最終多項式近似式が3次式の為、極点図の中心が上がり気味の為
- *version 1.50Y 2012/06/11 新しい管理に移行

概要

本プログラムは極点処理のDefocus補正のためのファイルを作成するプログラムです。 従来、Defocus補正は、配向のない被検試料と同じ材質のrandom試料が必要でした。しかしrandom試料を作成する事は困難である。 よって、random試料が得られない場合の代用ファイル作成に本プログラムを使用します。 極点処理で使えるrandomファイルは被検試料と同じ条件で測定された事が条件になっています。 測定条件が毎回同じであれば、本プログラムで作成したrandomファイルは Defocus補正の標準ファイルとして使えます。 Defocusプロファイルは光学系によって変化します。 光学系のゼロセッティングが重要です。ゼロセッティングは十分な吸収板を用意して 実際に試料測定するX線条件で調整を行って下さい。例えば40kV-40mA θ 軸の反割り確認、 α 軸の反割り確認をし、そのプロファイルがほとんどフラットである事を 確認してください。

注意

本プログラムで作成するrandomファイルは参考であり、十分にその正当性を確認して 使って下さい。(ValueODF)

randomサンプルが用意できる場合は、実際のrandom測定をしてください。

サポートしている光学系

Line光学系Shultzの反射法(185mm) Line光学系Shultzの反射法(285mm) CBO-f

プログラム名

DefocusCalc.jar C:¥CTR¥bin ディレクトリに存在します。

参照ファイル

C:¥CTR¥work¥DefocusCalc¥TABLE¥ ディレクトリ以下に存在するファイル群 バックグランド defocus ファイル群

runtime

本プログラムは j a r ファイルで供給される為、ご使用になるOSに合わせた j a v a の r u t i m e が必要です。

TABLE ファイル作成(別プログラム)

DefocusmakeTABLE. jar

Defocus補正の適正性チェックプログラムValueODF(別プログラム)

ODF解析が必要条件で、ODF解析前の極点図とODF解析後の再計算極点図を比較する事で確認し ます。必要なら2θ角度スリット幅を変更して再度補正するか、あるいはODFで使う極点図の領域を 変える事を試みます。

プログラムの起動

C:\CTR\bin\DefocusCalc.jar ファイルをクリックしてプログラムの起動

🛃 DefocusCalc 1.417GS by CTR user:Helpe 💻 💷 🗙	
File Help	
Method MesureBGMode 🛛 CalcBGMode	
LINE-BB185mm 👻	
ok	

Method		
🔲 MesureBGMode	📝 CalcBGMode	

MesureBGMode は従来の方法で、バックグランド除去を測定バックグランドで直接差し引いて 作成したデータベースを使用

CalcBDMode は ODFPOleGigure2(Ver.2.000 以降)の極点データ処理でバックグランドを 理想曲線で差し引いたデータベースを使用

ただし、ODFPOleFigure2 ソフトウエアは測定データの2 θ 角度と受光スリットから自動計算機能が 付属しているので、defocusデータなしにdefocus補正が可能

Mothodで表示しているコンボボックスを選択

Method	BB185mm	~

コンボボックスに何も表示されていない場合、TABLEファイルを確認してください。 標準で以下のファイルが存在します。(変更される可能性もあります)

■ tmpfile.txt - ワードパッド	
ファイル(E) 編集(E) 表示(V) 挿入(0) 書式(0) ヘルブ(H)	
C:¥CTR¥work¥DefocusCalc¥TABLE¥BB185mm¥19.558.t×t	^
C:¥CTR¥work¥DefocusCalc¥TABLE¥BB185mm¥22.625.txt	
C:¥CTR¥work¥DefocusCalc¥TABLE¥BB185mm¥32.223.txt	
C:¥CTR¥work¥DefocusCalc¥TABLE¥BB185mm¥43.297.txt	
C:¥CTR¥work¥DefocusCalc¥TABLE¥BB185mm¥50.433.t×t	
C:¥CTR¥work¥DefocusCalc¥TABLE¥BB185mm¥74.130.txt	
C:¥CTR¥work¥DefocusCalc¥TABLE¥Trans185mm¥17.450.txt	=
C:¥CTR¥work¥DefocusCalc¥TABLE¥Trans185mm¥20.183.txt	-
C:¥CTR¥work¥DefocusCalc¥TABLE¥Trans185mm¥28.699.txt	
C:¥CTR¥work¥DefocusCalc¥TABLE¥Trans185mm¥33.771.txt	
C:¥CTR¥work¥DefocusCalc¥TABLE¥Trans185mm¥35.321.txt	
C:¥CTR¥work¥DefocusCalc¥TABLE¥Trans185mm¥44.890.txt	
C:¥CTR¥work¥DefocusCalc¥TABLE¥Trans185mm¥46.116.txt	
C:¥CTR¥work¥DefocusCalc¥TABLE¥Trans185mm¥50.814.txt	
	×
ヘルプを表示するには、F1 キーを押してください。	NUM

ボタンにてTABLELISTが表示されます。

TABLELISTグラフの内側とグラフの上部に機能があります。

グラフの内側をクリックするとTABLEファイルに登録されているデータを表示します。 擬似集中法(185mm)の場合

スリット別のα-I曲線を表示

横軸の0:は極点図の中心、90:極点図の外側(0度から75度が表示されています) タイトルバーには、測定2θ角度が表示されています。 複数のプロファイルは、受光スリット1mm(最下部)から7mm(最上部)です。

擬似集中法の場合、測定2 θ角度と受光スリットでプロファイルが決定されます。

ok

グラフの上部をクリックするとDefocusprofile作成画面が表示

	🛓 De fo	ocusprofile					
	2Tř Re (ieta angle sceiving slit(mm) Calc	47.103 7 Cancel				
	Defo	cusプロファ	イルのパラメ	ータ(:	2θ、受光スリッ	ト)変更可能	
	Cal		れたプロファイ	イルを表	長示します。		
4 at	たとえは	$\therefore 2 \theta = 3 8.$	472度(C	u管坏	САІ (111))	の場合	
File	1616-00.472	WIGHT- 7.0 Deno	cusprome				
1.2							
0.0	0.0						90.0
が計算	算表示されま	す。					
ノアイ	File						
	Templa	te load					
	Defocu	s save のプルダ	゙ウンメニュー	があろ			
Геп	nplate	load	/ / /	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2		
	極点デー	・夕処理のran	d o mファイ	ルは測測	定条件が同じでな	けれがなりま	せん。

そこで、同じ測定条件にするために被検試料の測定ASCIIファイルを1oadして 作成するDefocusファイルに測定条件を取り込みます。 予め、被検試料の測定データをASCIIファイル化しておきます。

🔜 バイナリー→ASCII変換	
ファイル(E) ヘルプ(H)	,
変換実行	終了
ファイル設定	
変換形式 RINT2000 形式 ▼	
入力ファイル名 フォルダ: C:¥Windmax¥Data¥	
Al-Pole111.raw	
出力ファイル名 フォルダ: C:¥Windmax¥Data¥	
AI-Pole111.ASC	
改行文字 ₩indows/DOS形式(<cr+lf>) ▼</cr+lf>	

変換されたASCファイルをloadします。確認画面が表示されます。

📕 AI(111). ASC	- 7	リードパッド	
ファイル(E) 編集(E)) 3	表示(V) 挿入仰 書式(Q) ヘルプ(H)	
D 🛎 🖬 🎒	<u>à</u>	🗰 🔏 🖻 🛍 🛩 🖳	
*COMMENT	=	透過α=0.000	^
*FNAME	=		
*DATE	=	06-Jan-08 09:12	
*GROUP_COUNT	=	1	
*GONIO	=	RINT2000 広角ゴニオメータ, 185	
*ATTACHMENT	=	右多目的試料台	
*ASC	=	0, 0, 0.000000, 0.000000	
*SLIT_NAME	=	0, 発散スリット	
*SLIT_NAME	=	1, 散乱スリット	
*SLIT_NAME	=	2, 受光スリット	
*SLIT_NAME	=	3, 縦制限スソット	
*COUNTER	=	シンチレーションカウンタ。 0	
*POS_FORMAT	=	0	-
91VA MAD90	-	hata	<u> </u>
ヘルプを表示するには、	F1 :	キーを押してください。	NUM 📑

画面を閉じます。

Normlize Int. 1000.0
Defocus file name Al-Pole111-defocus
OK Cancel

規格化強度は、作成するrandomファイルの規格化強度を入力します。 ODF解析の場合はODFソフト内で強度の規格化が行われるので1000.0で良い。 極点図の規格化強度の大小比較を行うのであれば、被検試料をバック除去、吸収補正、内部規 格化を行った規格化強度を入力してください。

処理:	: 規格化 👤	
結晶系:	: 立方晶系 📃	
r	h k l 1 1 1	
最大強調 ■ 線吸収係響	實:8.701 約·121 6800 1/cm	
■ 試料の厚る	さ:0.0050000 cm	
カールファク 規格化強度	29:0.296541 實:206311.500	
被検α手	均因	
計算開始	は2月度: 0.0 ての角度・2000	
	1 P 71,8, 100.0	
4		
Normlize	Int. 206311.5	
Defocus f	file name Al-Pole111-defocus	

Normlize Int. 206311.5
Defocus file name Al-Pole111-defocus
O K Cancel

OKでtemplateと同じディレクトリにファイルが作成されます。 作成されたrandomファイルの確認、内部規格化を行う。

🙆 処理条件(C:¥Windmax¥APPS¥Poleproc¥Pol 🔀
 □ 平滑化 □ β方向点数: 5 ● □ 0方向点数: 5 ●
■ BC補正 補正方法: 一律BG補正 ■BG補正ファイル1
 ▶710-名: 補正係数: 1.000 ● BG補正ファイル2 ■ アァル名:
補正係数: 1.000 ●
線吸収(系数: 0.0000 1/cm 試料の厚さ: 0.0000000 cm
Z7·ル名: Z7・ルファクタ: 0.000000 使用 「「「「」」「」」 「「」」」 「「」」」 「「」」」 「「」」」 「」」 「」」 「」」 「」」 「 「」 「」 「」 「 「」 「」 「」 「」 「」 「」 「 「」 「 「」 「 「 「」 「 「 「」 「」 「」 「」 「」 「」 「」 「」 「」 「 「」 「」 「」 「」 「」 「」 「」 「」 「」 「」 「」 「」 「 「」 「
透過係数 反射係数
強度 強度比 透過デーク 反射デーク
 ✓ 規格化 規格化方法:内部計算規格化 ▼ 規格化ファ心 ✓ ✓ ✓

作成した r a n d o m ファイルは、 β 方向(円周方向)の強度が同じになっています。 極点で等高線が引けないので、 α 一強度曲線とします。

規格化強度が作成時指定した値になります。

これで、Defocusを補正するためのrandomファイルが作成できました。

Version 1.36 2008年06月05日 前回の処理条件を反映させる。