HCPSchmidFactorCalc3ソフトウエア Ver3.03

マグネシウム {-2112}<2-1-13>SlipSystem

- 1. 概要
- 2. ソフトウエアの使い方
- 3. DataInput動作確認
 - 3. 1 P l a n e 入力
 - 3. 1. 1 HCP金属のシュミット因子計算 (f c c)
 - 3. 2Direction入力
 - 3. 3方位入力
 - 3. 4 e u l e r 角度入力

4. テストデータ入力

- 5. LaboTexのVolumeFraction結果の入力
- 6. HCPSchmid方位図
 - 6. 1 S c h m i d 方位図の使い方
- 7. MTEXによるHCPSChmid因子計算

1MTEXの導入

- 8. newODF (SmartLab) のVolumeFraction取り込み
 - 8.1 SmartLabVFデータのExport
 - 8.2 データの読み込み
- 9. A-Type-B-TypeのVolumeFraction

1. 概要

単結晶試料に対し外力Fを与えた場合、すべり方向に対し、Fcos λ が加わる。 断面積をAとした場合、すべり面の面積はA/cos ϕ で計算される。 この時のせん断応力は

> F/Acos ϕ cos $\lambda = \sigma$ cos ϕ cos λ S = cos ϕ cos λ をシュミット因子 (Schmid因子) という。

横浜国立大学岡安先生資料より

HCP金属では、 ${11-22} < -1-123 >$ などのすべり方位があります。 この評価を行ってみます。

計算は、HexatoCubicソフトウエアと同じで、Slipと共にHCPからCubicに 変換し、ベクトルの外積として計算が行われます。

この計算方法はHexatoCubicを参考にして下さい。

極点図からODF解析を行い、方位のVolumeFractionの計算から材料全体のSchmid因子が計算できます。

2. ソフトウエアの使い方

$ODFPoleFigure \oslash ToolKit \hbox{->} OrientationDisplayToos$

Ø OrientationDisplayTools 1.15ST[- 🗆 X					
File Help						
General Orientation Display {hkl} <uvw></uvw>	OrientationDisplay	Orientation Disp				
-Cubic Orientation Display {hkl} <uvw></uvw>	NewCubicCODisp	Orientation Disp				
-Hexagonal Orientation Display {hkl} <uvw></uvw>	HexaConvert	Orientation Disp				
-Cubic,Tetragonal,Orthorombic {hklKuvw>	CrystalOrientationDisp	Orientation Disp				
-Cubic ∯kt/Kuvw>	CrystalRotation	Orientation Disp				
FCCSlipFactor {hkl}Muvw>	FCCSchmidFactorCalc	SchmidFactor Disp				
BCCSchmidFactor [hklKuvw>	BCCSchmidFactorCalc	SchmidFactor Disp				
HexatoCubic h k i l	HexatoCubic	Schmidcalc Display				
hkl hkl	CubictoHexa	Hexalndex Display				
HCPSchmidFactor {hkilKuvtw>	HCPSchmidFactorCalc	ScfmidFactor Disp				

予め、MaterialDataで材料を選択後、使用してください。

データ入力部分	
HCPSchmidFactorCalc3 3.00T[2X(03/31] by CTR	– 🗆 X
File Help Text SlipProfile Magnesium	
-InputFile(TXT)	
LaboTex VolumeFraction(SumVFmode) V 2 (0 0 0 1)<1	0 -1 0> 100.0 ~
1.6235	Disp DI
Slip Systems	
☑ {0001}<11-20>	Inverse
Data input 	
ND Input Input	Input
$\begin{bmatrix} A \text{ or } R $	🗌 SlipDisp
	Schmidcalc
SchmidFactorProfile	Symmetry SchmidCalc
ND->RD V Step 1 V	SchmidFDisp

計算部分

データ入力モード

デモデータ部分

~

MCPSchmidFactorCalc3 3.03 by CTR PDuser HelperTex CTR

Fil	e Help Text SlipProfile Magnesium abs(SF)		
Ŀ	putFile(TXT)		
	LaboTex VolumeFraction(SumVFmode)	~	{0 0 0 1}<1 0 -1 0> 100.0
1	Data input	-	-{0 0 0 1}<1 0 -1 0> 100.0
	LaboTex VolumeFraction(100%VFMode)		{0 0 0 1}<2 -1 -1 0> 100.0
	MIIIer Notation {hkil} <uvtw>-table(TXT)</uvtw>		{-1 2 -1 0}<1 0 -1 0> 100.0
: ا	EulerAngle φ1Φφ2-table(TXT)	-	{0 1 -1 0}<2 -1 -1 0> 100.0
	LaboTex VolumeFraction(SumVFmode)	2	{-1 2 -1 0}<0 0 0 1> 100.0
	newODF VolumeFraction(100%VFMode)		{-1 2 -1 5}<1 0 -1 0> 100 0
Γ,	newODF VolumeFraction(SumVFmode)		{0 1 -1 3}<2 -1 -1 0> 100.0

3. DataInput動作確認

3.1 Plane入力(Planeから法線方向を計算しSchmid因子を計算)

InputFile(TXT)					
Data input	~	Ē	{0 0 0 1}<1 0 -1 0	> 100.0	\sim
			ca 1.6235	Disp	🗌 DI
Slip Systems					
{0001}<11-20>{01-10}<2-1-	10> 🗌 {-1101}<2-1-13> 💽	{-2112}<2-1-13>		Inve	erse
Batain put ⊡h ki l}	N_kilKuvtw>		ii1 PHI phi2		
ND 11-23 Input		Input	•	Inp	ut

続けて、13-41も入力し、Schmidcalc

# HCPSchmidFactorCalc3 3.00T[22/03/31] by CTR	-		×
File Help Text SlipProfile Magnesium			
[InputFile(TXT)			
Data input ~ 😂 {0 0 0 1}<1 0 -1	0> 100.	0 ~	,
Ca 1.6235	Disp)I
Slip Systems			
□ {0001}<11-20> □ {01-10}<2-1-10> □ {-1101}<2-1-13> ☑ {-2112}<2-1-13>		Inverse	
Data input			
ND 1 3 - 4 1 Input Input		Input	
{h k i l} <u t="" v="" w=""> phi1 PHI phi2 (-2112)[2-1-13] 0.033</u>			^
{1 1 -2 3} -0.26			
{1 3 - 4 1} (1-212)[-12-13] 0.033			
(2-1-12)(-2-113) 0.230 maxScmidEactor= 0.26			
{13-41} cubic {28 29 6}			
(11-22)[-1-123] -0.331			
(-12-12)[1-213] -0.17			
(-2112)[2-1-13] -0.031			
(-1-122)[11-23] -0.456			
(1-212)[-12-13] -0.264			
(2-1-12)(-2113) 0.0 maySemidEactor= 0.456			
max3cmidr actor= 0.430			~
<			>
Along RD(X) Along TD(Y) <= 0 Along ND(7)			
	Sli	pDisp	
	S	chmidcalo	
SchmidFactorProfile Sy	mmetry S	chmidCal	le
□ ND->RD ∨ Step 1 ∨	Schmi	dFDisp	25 tat - 7
1		12170	196756 24

HexaPlaneからCubicPlane (=Direction) に変換し計算 すべり方位毎に計算し、最大値を求める。

3. 1. 1 HCP金属のシュミット因子計算

Cubicの方位{30 8 95}からHCP-Plane入力のためPlaneを計算

		- 0	×	
не нер				
Matertial				
Material Magnesium		1.6	235	
h k I				
30 8 95 {3 1 -4 20 } {3	1 20 }			
		toHova		
11-1 <12-3-2> <4	5 -2 >	ιστιεχά		
		1		
HCPのPlaneを入力				
HCPSchmidFactorCalc3 3.00T[22/03/31] by	CTR			- 🗆 X
File Help Text SlipProfile Magnesium				
InputFile(TXT)				
Data input	~	Ē	{0 0 0 1}<	1 0 -1 0> 100.0 🛛 👋
			1.62	35 Disp DI
Slip Systems				
[] {0001}<11-20> [] {01-10}<2-1-10>	→	3> 🛛 {-211	2}<2-1-13>	Inverse
Data input hkil} ────	⊡hkilKuvtw>———		hi1 PHI phi2	
ND 31-420 Input		Input		Input
{h k i l} <u t="" v="" w=""> phi1 PHI phi2</u>		4.40		
{h k i l} <u t="" v="" w=""> phi1 PHI phi2 {3 1 -4 20}</u>	{31-420} cubic {16 (11-2	4 49} 2)[-1-123]	0	49
{h k i l} <u t="" v="" w=""> phi1 PHI phi2 {3 1 -4 20}</u>	{31-420} cubic {16 (11-2 (-12-'	4 49} 2)[-1-123] 12)[1-213]	0	49 431
{h k i l} <u t="" v="" w=""> phi1 PHI phi2 {3 1 -4 20}</u>	{31-420} cubic {16 (11-2 (-12- (-211)	4 49} 2)[-1-123] 12)[1-213] 2)[2-1-13] 2)[2-1-13]	000000000000000000000000000000000000000	49 431 279 227
{h k i l} <u t="" v="" w=""> phi1 PHI phi2 {3 1 -4 20}</u>	{31-420} cubic {16 (11-2 (-12- (-211 (-1-1) (1-21	4 49} 2)[-1-123] 12)[1-213] 2)[2-1-13] 22)[11-23] 2)[-12-13]	000000000000000000000000000000000000000	49 431 279 227 365
{h k i l} <u t="" v="" w=""> phi1 PHI phi2 {3 1 -4 20}</u>	{31-420} cubic {16 (11-2 (-12-' (-211 (-1-1) (1-21 (2-1-'	4 49} 2)[-1-123] 12)[1-213] 2)[2-1-13] 22)[11-23] 2)[-12-13] 12)[-2113]	000000000000000000000000000000000000000	49 431 279 227 365 475
{h k i l} <u t="" v="" w=""> phi1 PHI phi2 {3 1 -4 20}</u>	{31-420} cubic {16 (11-2 (-12- (-211 (-1-12) (1-21) (2-1- maxS	4 49} 2)[-1-123] 12)[1-213] 2)[2-1-13] 22)[11-23] 2)[-12-13] 12)[-2113] cmidFactor= 0	0 0 0 0 0 0.49	49 431 279 227 365 475
{h k i l} <u t="" v="" w=""> phi1 PHI phi2 {3 1 -4 20}</u>	{31-420} cubic {16 (11-2 (-12-' (-211) (1-21) (1-21) (2-1-' maxS	4 49} 2)[-1-123] 12)[1-213] 2)[2-1-13] 22)[11-23] 2)[-12-13] 12)[-2113] cmidFactor= (0 0 0 0 0 0 0.49	49 431 279 227 365 475
{h k i l} <u t="" v="" w=""> phi1 PHI phi2 {3 1 -4 20}</u>	(31-420) cubic {16 (11-2 (-12- (-211 (1-11) (1-21 (2-1- maxS	4 49} 2)[-1-123] 12)[1-213] 2)[2-1-13] 22)[11-23] 2)[-12-13] 12)[-2113] cmidFactor= (000000000000000000000000000000000000000	49 431 279 227 365 475
{h k i l} <u t="" v="" w=""> phi1 PHI phi2 {3 1 -4 20} AlongRD(X) AlongTD(3 v 0 2 v</u>	(31-420) cubic {16 (11-2 (-12-' (-211) (1-21) (1-21) (1-21) (2-1-' maxS	4 49} 2)[-1-123] 12)[1-213] 2)[2-1-13] 22)[11-23] 2)[-12-13] 12)[-2113] cmidFactor= 0	000000000000000000000000000000000000000	49 431 279 227 365 475
{h k i l} <u t="" v="" w=""> phi1 PHI phi2 {3 1 -4 20} AlongRD(X) AlongTD(3 v 0 2 v</u>	(31-420) cubic {16 (11-2 (-12- (-211) (1-21) (1-21) (2-1-' maxS	4 49} 2)[-1-123] 12)[1-213] 2)[2-1-13] 2)[-12-13] 2)[-12-13] 12)[-2113] cmidFactor= 0 0 4	0 0 0 0 0.49	49 431 279 227 365 475 SlipDisp
{h k i l} <u t="" v="" w=""> phi1 PHI phi2 {3 1 -4 20}</u>	{31-420} cubic {16 (11-2 (-12 (-211 (1-11) (1-21) (2-1 maxS	4 49} 2)[-1-123] 12)[1-213] 2)[2-1-13] 22)[11-23] 2)[-12-13] 22)[-2113] cmidFactor= (0 4	000000000000000000000000000000000000000	49 431 279 227 365 475 Schmidcalc
{h k i l} <u t="" v="" w=""> phi1 PHI phi2 {3 1 -4 20} AlongRD(X) AlongTD(3 \cdot 0 2 \cdot 0 SchmidFactorProfile ND->RD \cdot 0</u>	(31-420) cubic {16 (11-2 (-12- (-211) (1-21) (1-21) (2-1- maxS	4 49} 2)[-1-123] 12)[1-213] 2)[2-1-13] 22)[11-23] 2)[-12-13] 2)[-2113] cmidFactor= 0 0 4 Step 1	000000000000000000000000000000000000000	49 431 279 227 365 475 SlipDisp Schmidcalc Symmetry SchmidCalc SchmidFDisp

文献と同一の値が得られます。

3.3 方位入力

HexaConvert 1.11ST[22/03/31] by CTR File Step Help	_		×
A □ X-Axis[100] ([2-1-10])	+		
Miller Notation (3Axis Notation) 1 1 3 1 -1 0 -1	hkl	UVW	
Miller Bravais Notation(4 Axis Notation) $\boxed{1 \ 1 \ 2 \ 3 \ }$ $1 \ -1 \ 0 \ 0 \ -$	hkil	uvxw	
Euler(p1Fp2) 0.0 46.251 60.0			
Material select Beryllium.TXT	~		
c/a 1.567 Input ψ2 Angles 0	Calc		
DISP	2122		
Position 10 Y Disp size 200 Y BG Corr Black ✓ Line size 1.0 ✓	MINUS	;	
OK Return Structure			

方位のPlaneのみ入力される

HCPSchmidFactorCalc3 3.00T[22/03/31] by CTR	– 🗆 ×
File Help Text SlipProfile Magnesium	
[InputFile(TXT)	
Data input ~ (0 0 0 1)<1 0	-1 0> 100.0 🛛 🗸
Ca 1.6235	Disp DI
Slip Systems	
□ {0001}<11-20> □ {01-10}<2-1-10> □ {-1101}<2-1-13> ☑ {-2112}<2-1-13>	Inverse
Data input	
the site of t	
ND 31-420 input 11-231-100 input	Input
{h k i I} <u t="" v="" w=""> phi1 PHI phi2</u>	
{1 1 -2 3} {11-23} cubic {10 6 11}	
(11-22)[-1-123] 0.189)
(-12-12)[1-213] 0.258	
(-2112)[2-1-13] 0.033	
(-1-122)[11-23] -0.26	
(1-212)[-12-13] 0.033	i
(2-1-12)[-2113] 0.258	
maxScmidFactor= 0.26	
Along RD(X) Along TD(Y)<=0 Along ND(Z)	ClipDicp
	SilpDisp
	Schmidcalc
_SchmidFactorProfile	Symmetry SchmidCalc
ND->RD V Step 1 V	
	SchmidFDisp

3.4 euler角度入力

InputFile(TXT) Data input \$\begin{aligned} 0 & 0 & 0 & 1 \><1 & 0 & -1 & 0 > 10 \$\end{aligned}\$ Slip Systems \$\delta\$ (0001]<11-20> \$\lefta\$ (01-10]<2-1-10> \$\lefta\$ (-1101]<2-1-13> \$\lefta\$ (-2112]<2-1-13> \$\end{aligned}\$ Data input \$\mathbf{h} k & i \$\mathbf{i}\$ \$\end{aligned}\$ Data input \$\mathbf{h} k & i \$\mathbf{i}\$ \$\end{aligned}\$ \$\mathbf{h} k & i \$\mathbf{i}\$ \$\mathbf	0.0 P DI
Data input Image: Constraint of the second seco	0.0 V DI Inverse
Ca I.6235 Disi Slip Systems $(0001)<(11-20)$ $(01-10)<(2-1-10)$ $(-2112)<(2-1-13)$ Data input $h k i l k u v t w$ phil PHI phi2 ND input $0 46.25 60$ {h k i l} $0 46.25 60$ {h k i l} $11-23$ cubic {10 6 11}	p DI Inverse
Slip Systems Ø (0001}<11-20> (01-10)<2-1-10> [-1101]<2-1-13> [-2112]<2-1-13> Data input [h k i l] [h k i l] [h k i l] [h k i l] ND Input [h k i l] [0 46.25 60] {h k i l} [11-23] [11-23] cubic {10 6 11}	Inverse
✓ {0001}<11-20> (01-10)<2-1-10> (-1101)<2-1-13> (-2112)<2-1-13> Data input Input Input 0 46.25 60 ND Input 0 46.25 60 {h k i l} 0 46.25 60 {h k i l} (11-23) {11-23} (11-23)	
Data input th k i lku v t w> phil PHI phi2 Input Input 0 46.25 60 {h k i l} <u t="" v="" w=""> phil PHI phi2 0 46.25 60 {h k i l}<u t="" v="" w=""> phil PHI phi2 11-23 {1 1 -2 3} {11-23} cubic {10 6 11}</u></u>	Input
{h k i l} <u t="" v="" w=""> phi1 PHI phi2 {1 1 -2 3} {11-23} cubic {10 6 11}</u>	
(0001)[-2110]-0.249 (0001)[1-210]-0.249 (0001)[11-20]0.498 maxScmidFactor= 0.498	
Along RD(X) Along TD(Y)<=0	SlipDisp Schmidcalc SchmidCalc midFDisp

euler角度からPlaneを計算し、Cubicの方位を求めSchmid因子を計算

4. テストデータ入力

# HCPSchmidFactorCalc3 3.00T[22/03/31] by CTR	— C	x c
File Help Text SlipProfile Magnesium		
_ InputFile(TXT)		
LaboTex VolumeFraction(SumVFmode) V 2 (0 0 0 1)<1 0 -1 0)> 100.0	~
{0 0 0 1}<1 0 -1 0	> 100.0	^
{0 0 0 1}<2 -1 -1	0> 100.0	
{-1 2 -1 0}<1 0 -1	0> 100.0	
Slip Systems {0 1 -1 0}<2 -1 -1	0> 100.0	
[-1 2 -1 0]<0 0 0 [-1101]<2-1-13> [-2112]<2-1-13> [-1 2 -1 0]<0 0 0 [-2112]<2-1-13> [-1 2 -1 0]<0 0 0 [-1 2 -1 0]<0 0 0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0 [-1 2 -1 0]<0	1> 100.0	
Data input {0 1 -1 0}<0 0 0 1	> 100.0	
hkilKuvtw>p{{-1 2 -1 5}<10 -1	0> 100.0	
ND Input Input Input	0> 100.0	~
# HCPSchmidFactorCalc3 3.00T[22/03/31] by CTR	- 🗆	×
File Help Text SlipProfile Magnesium		
InputFile(TXT)		
LaboTex VolumeFraction(SumVFmode) V 2-1-1 (0> 100.0	\sim
1.6235	Disp	DI
Slip Systems		
	Inve	erse
Data input		
[∱h k i [} [∱h k i [Ku v t w> [phi1 PHI phi2		
ND Input Input 0 46.25 60	Inp	ut
{0001} cubic {0 0 1}		
(11-22)[-1-123] 0.447		
(-12-12)[1-213] 0.447		
(-2112)[2-1-13] 0.447		
(-1-122)[11-23] 0.447		
(1-212)[-12-13] 0.447		
maxScmidFactor= 0.447		
{hkil} <uvtw> VF Schmid</uvtw>	VF*S	chmid
{0 0 0 1}<2 -1 -1 0> 100.0 0.44/	0.447	
SchmidFactor(VFsummode)=0.447		
Along RD(X) Along TD(Y)<=0 Along ND(Z)	_	
	SlipDi	sp
	Sohmi	deale
	Scrimi	lacaic
Sym	metry Schm	idCalc
SchmidFactorProfile		
ND->RD V all V Step 1 V	SchmidFD	isp

5. LaboTexのVolumeFraction結果の入力(B-Type)

ODFの最小値が0.041%、randomが4%含まれている可能性があります。 VolumeFraction計算前のODF図をEXportし確認

r a n d o m は O D F 値 1. 0 以下の最大値として計算されます。

0. 04->4%含まれています。

background (その他の方位) は全てrandomである。

VolumeFraction結果

この結果からSchmid因子を計算する。

Schmid因子計算

その他の成分を除いて計算を行う。

HCPSchmidFactorCalc3 3.00T[22/03/31] by CT	ſR	-	- 🗆 X
File Help Text SlipProfile Magnesium			
InputFile(TXT)			
LaboTex VolumeFraction(SumVFmode	2) ~ 🖆	{0 0 0 1}<2 -1 -1 0>	• 100.0 V
C:\LaboTex2\USER\Hexa.LAB\D8-Hexagonal.LAB\Demo.L	AB\HCPTEST4.LAB\Job03\HCPTEST4.POD	1.6235	Disp DI
Slip Systems			
☐ {0001}<11-20> ☐ {01-10}<2-1-10>	[-1101]<2-1-13> [-2]	112}<2-1-13>	Inverse
ΓÐh k. il}[β	kilKuvtw>	∟phi1 PHI phi2	
ND Input	Input	0 46.25 60	Input
/0 1 -1 0\<0 0 0 1> 32 0	(11-22)[-1-123]	0.384	
(0, 0, 0, 1) < 1, 0 = 1, 0 > 31, 0	(-12-12)[1-213]	0.387	
10 - 0 - 1 $5 - 1 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0$	(-2112)[2-1-13]	0.384	
{-12-13}<10-10232.0	(-1-122)[11-23]	0.178	
	(1-212)[-12-13]	-0.024	
	(2-1-12)[-2113]	0.178	
	maxScmidFactor	= 0.387	
	{hkil} <uvtw></uvtw>	Schmid	VF*Schmid
	$\{0, 1, -1, 0\} < 0, 0, 0, 1 > 32$	0 0.335	0 107
	{0 0 0 13<1 0 -1 0> 31	0 0.447	0.138
	L12_15\<10_10> 32	0 0.387	0.124
	vfsum= 0.95	0.007	0.124
	SchmidEactor/\/Esummode)=0	380	
		000	~
	<		>
Along RD(X) Along TD(Y)	(=0 AlongND(Z)		
	0 1 2 0 4	0	SlipDisp
			Schmidcalc
SchmidFactorProfile		Symm	etry SchmidCalc
ND->RD V all	∨ Step 1	~ 5	SchmidFDisp
1			

各方位からCubic方位を計算し、Schmid因子を求める。

最大Schmid因子とVF%から全体のSchmid因子を計算する。

```
計算の確認
```

Symmetry SchmidCalc SchmidFDisp

Mathematical TextDisplay 1.14S C:¥CTR¥	work¥SchmidLow	BCC¥SchmidFctc	or.txt	_	\times
File Help					
{01-10} cubic {7 12 0}					
(11-22)[-1-1	123]	-0.335			
(-12-12)[1-2	213]	-0.335			
(-2112)[2-1	-13]	0.0			
(-1-122)[11	-23]	-0.335			
(1-212)[-12	-13]	-0.335			
(2-1-12)[-2	113]	0.0			
maxScmidF	actor= 0.335				
{0001} cubic {0 0 1}					
(11-22)[-1-1	123]	0.447			
(-12-12)[1-2	213]	0.447			
(-2112)[2-1	-13]	0.447			
(-1-122)[11	-23]	0.447			
(1-212)[-12	-13]	0.447			
(2-1-12)[-2	113]	0.447			
maxScmidF	actor= 0.447				
{-12-15} cubic {0 2 3}					
(11-22)[-1-	123]	0.384			
(-12-12)[1-2	213]	0.387			
(-2112)[2-1	-13]	0.384			
(-1-122)[11	-23]	0.178			
(1-212)[-12	-13]	-0.024			
(2-1-12)[-2	113]	0.178			
maxScmidF	actor= 0.387				
{hkil} <uvtw></uvtw>	VF	Schmid	VF*Schmid		
{0 1 -1 0}<0 0 0 1>	32.0	0.335	0.107		
{0 0 0 1}<1 0 -1 0>	31.0	0.447	0.138		
{-1 2 -1 5}<1 0 -1 0>	32.0	0.387	0.124		
vfsum= 0.95					
SchmidFactor(VFsummod	le)=0.389				

6. HCPSchmid方位図

今まで、SlipSystem は、{-2112}<2-1-13>で行っていたが、選択は以下で行われる。

複数選択も可能

方位図の乱れは、整数化の最大整数に関係する。

6. 1 S c h m i d 方位図の使い方

マウスカーソル位置の方位をリアルタイムで表示し、クリックで固定される

Directionで表示

7. MTEXによるHCPSChmid因子計算**{-12-15}<10-10>**

マグネシウム SlipSystem (-12-12) [1-213] による{-12-15}<10-10>を計算する

HexaConvert 1.11ST[22/03/31] by CTR − ×
File Step Help
A □ X-Axis[100] ([2-1-10])
Miller Notation (3Axis Notation)
□ -1 ~ 2 ~ 2 ~ 0 ~ -1 ~ 1 ~ hkl uvw
Miller Bravais Notation(4 Axis Notation)
✓ -1 ∨ 2 ∨ -1 2 ∨ 1 ∨ -2 ∨ 1 3 ∨ hkil uvxw
Euler(p1Fp2)
90.0 58.377 0.0
Material select
Magnesium.TXT ~
c/a 1.624 Input ψ2 Angles 0 Calc
∫ DISP
Position 10 V Disp size 200 V DISP
BG Corr Black ~ Line size 1.0 ~ MINUS
OK Return Structure

MTEXでは3指数入力

▲ HexatoCubic 1.00T[22/03/31] by CTR	—		×
File Help			
HexagonalMaterial Material	1.	6234]
Slip System			
1 -2 1 3 0 -5 8	toCu	IDIC	
h k i l -1 2 -1 5 0 2 3	toCu	ıbic	
cosφ= 0.9036	Sch	imid	
SchmidFactor= 0.3871			

MTEXでは、Planeの方位(ベクトル)入力

この違いは、Hexagonal->Cubicの指数整数化による

Plane 方位の見直し

▲ HexatoCubic 1.01T[22/03/31] by CTR	_		×
HexagonalMaterial Material			
Slip System h k i l -1 2 -1 2 0.0 0.85143 0.52447 -> 0 8 5 u v t w 1 -2 1 3 0.0 -0.52447 0.85143 -> 0 -5 8	toCubi	c	
h k i l -1 2 -1 5 0.0 0.54461 0.83869 > 0 2 3	toCubi	c	
cosφ= 0.9036 Schmid			
Schmid-actor= 0.3871			

>> r = normalize(vector3d(0, 0.54461, 0.83869))

```
r = vector3d (show methods, plot)
x y z
0 0.54461 0.83869
>> sS = slipSystem(d,n)
sS.SchmidFactor(r)
```

```
sS = slipSystem (show methods, plot)
mineral: Mg (6/mmm, X | | a*, Y | | b, Z | | c*)
 size: 1 x 1
      V
 U
            Т
                 W | H
                             Κ
                                Ι
                                        L CRSS
  1
      -2
            1
               3 -1
                           2 -1
                                     \mathbf{2}
                                          1
```

```
ans =
```

0.3872

期待値が得られます。

7.1 MTEXの導入

MTEXは、MATLAB環境下で動作するEBSD, XRDのODF解析他を行えます。 CTRソフトウエアでは、XRD, EBSDデータからMTEX入力データ作成と MTEXで解析が行われたデータ(ODF図, 極点図、逆極点図)のExportデータに対し 解析を行えます。

問い合わせください。

- 8. newODF (SmartLab) のVolumeFraction取り込み
- 8.1 SmartLabVFデータのExport

ODF計算										
計算方式	: コンポーネントモ	デル 🔽 🗆 ОС	ŊFグリッド ──							
■24490×21471は 1/4×2147 中ステップ(*): 5.00										
α解析開始角度(°): 0.00 00-7テップ(°): 5.00										
α解析終了角度(°): 90.00										
パラメーター										
結晶相	: Ti	~	ODFをシミ:	1/						
最小化アルゴリズム	: 遺伝的アルゴリ	IXI. V]							
		100 5 4	1							
□ □ □ □ □	」 1回14-剱:	2-95	Γχ-: 0.1							
重み: 50.00	」クロスオーバー:	50.00								
コンポーネント定義	ŧ		7.4.30(0) 決」	極点図から	計算					
- コンポーネント定募 ランダムの分率 0 体積分率 (%): 78	1.79 最小: 3.80 +- コンオ	0.00 最; パーネントをDBから	大: 1.00 読み込む	極点図から フィッティ コンポーネン	計算 マング: 🔽 トをDBに保存					
コンポーネント定義 ランダムの分率 0 体積分率 (%): 78 コンポーネント	も 1.79 最小: 1.80 +- コンオ 名称 色 極点	0.00 最: パーネントをDBから 点図上に表示	た: 1.00 読み込む 方位	極点図から フィッティ コンポーネン	計算 (ング: ▽ トをDBに保存 :諸分率(%)					
- コンポーネント定豪 ランダムの分率 0 体積分率(%):78 コンポーネント N タイプ 4 ▶ 1 . ▼ TD-1	も 1.79 最小: 3.80 +- コンオ 名称 色 極点 Split	0.00 最. ポーネントをDBから 点図上に表示 又 ((た: 1.00 読み込む 「 方位) 1 3)[1 (極点図から フィッティ コンポーネン (計算 (ング: ☑ トをDBに保存 :諸分率(%) 乳順に並べ替え					
コンポーネント定募 ランダムの分率 0 体積分率 (%): 78 コンポーネント N タイプ 4 ▶ 1 . ▼ TD-: コンポーネントプロ	も 1.79 最小: 3.80 + - コンオ 名称 色極。 Split リパティ	0.00 最; ポーネントをDBから 点図上に表示 ✓ ((大: 1.00 読み込む 方位) 1 3)[1 (極点図から フィッティ コンポーネン 体 な ス↓ 単	計算 (ング: ☑ トをDBに保存 : 諸分率(%) 早順に並べ替え 年順に並べ替え 年間に並べ替え	,				
- コンポーネント定募 ランダムの分率 0 体積分率(%):78 コンポーネント N タイプ 4 ▶ 1 . ▼ TD-1 コンポーネントプロ パラメーター	6 1.79 最小: 3.80 +- コンオ 名称 色極。 Split リパティ 値	0.00 景; ポーネントをDBから 気図上に表示 ✓ ((最小	大: 1.00 読み込む 「方位 」13)[1(最大	極点図から フィッティ コンポーネン ↓ c 2↓ 単 ズ↓ 単	計算 (ング: ▼ トをDBに保存 諸分率(%) 早順に並べ替え 牟順に並べ替え をべ替えをクリア の列でグループ	, (K.				
コンポーネント定募 ランダムの分率 0 体積分率(%):78 コンポーネント N タイプ 4 ▶ 1 . ▼ TD パラメーター ケ率	も 1.79 最小: 3.80 + コンボ 名称 色 極点 Split	0.00 最; ポーネントをDBから 点図上に表示 ✓ ((最小 0.00	大: 1.00 読み込む 方位 0 1 3)[1 (最大 1.00	極点図から フィッティ コンポーネン ▲ ↓ 単 ・ こ っ っ	計算 (ング: ♪ トをDBに保存 :結分率(%) 早順に並べ替え 牟順に並べ替えをクリア :の列でグループ・ パネルを	, 化 表示				
コンポーネント定募 ランダムの分率 0 体積分率(%):78 コンポーネント N タイプ 4 ▶ 1 . ▼ TD-3 パラメーター 分率 FWHM (°)	6 1.79 最小: 3.80 +- コンガ 名称 色極。 Split 1/(ディ 値 0.21 5.61 0.38	0.00 景; ポーネントをDBから 気図上に表示 ✓ (0 最小 0.00 1.00 0.00	た: 1.00 読み込む [方位) 1 3)[1 (長大 1.00 40.00 90.00	極点図から フィッティ コンポーネン (2 4 第 章 9 9 9 9 9 9 9 9 9 9 9	計算 (ング: ▼ トをDBに保存 語分率(%) 早順に並べ替え 年順に並べ替え をべ替えをクリア の列でグループパ ネルを 可選択を表示	, 化 表示				
コンポーネント定募 ランダムの分率 0 体積分率 (%): 78 コンポーネント 1 · ▼ TD パラメーター 「パラメーター FWHM (°) Φ(°)	も 1.79 最小: 3.80 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0.00 最: ポーネントをDBから 点図上に表示 ✓ (0 最小 0.00 1.00 0.00 0.00	大: 1.00 読み込む 方位) 1 3)[1 (最大 1.00 40.00 90.00 90.00	極点図から フィッティ コンポーネン ▲ ▲ ② ② ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	計算 (ング: ♪ トをDBに保存 :結分率(%) 早順に並べ替え を(結えをクリア :の列でグループ・ パネルを 可選択を表示 ミスト フィット	, 化 表示				
コンポーネント定募 ランダムの分率 0 体積分率 (%): 78 コンポーネント N タイプ 4 ▶ 1 . ▼ TD-3 パラメーター パラメーター 分率 FWHM (°) Φ (°) Φ (°)	1.79 最小: 3.80 + - コンオ 名称 色極。 Split 0.21 5.61 0.38 32.25 3.13	0.00 景; ポーネントをDBから 気図上に表示 ✓ (0 最小 0.00 1.00 0.00 0.00 0.00	た: 1.00 読み込む [方位) 1 3)[1 (最大 1.00 40.00 90.00 90.00 60.00	極点図から フィッティ コンポーネン (2 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	計算 (ング: ✓ トをDBに保存 (活分率(%)) 早順に並べ替え 年順に並べ替え なべ替えをクリア の列でグループパネルを 可選択を表示 ベストフィット (ストフィット ()	, 化 表示 すべての列)				
コンポーネント定 ランダムの分率 0 体積分率 (%): 78 コンポーネント N タイプ 4 ▶ 1 . ▼ TD プンポーネントプロ パラメーター 分率 FWHM (°) ♀1 (°) ♀1 (°) ♀2 (°)	も 1.79 最小: 3.80 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0.00 最: ポーネントをDBから 気図上に表示 ▼ (0 最小 0.00 1.00 0.00 0.00 0.00	大: 1.00 読み込む 万位) 1 3)[1 (最大 1.00 40.00 90.00 90.00 60.00	極点図から フィッティ コンポーネン (2↓ 厚 (2↓ 厚 (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	計算 (ング: トをDBに保存 語分率(%) 副順に並べ替え をべ替えをクリア の列でグループ・パネルを 列連択を表示 ズストフィット ズストフィット (3) ロルターエディタ	, 化 表示 すべての列) 7				
コンポーネント定募 ランダムの分率 0 体積分率 (%): 78 コンポーネント 1 . ▼ TD-: パラメーター 分率 FWHM (°) Φ (°) φ ₂ (°)	 1.79 最小: 3.80 キー コンガ 名称 色極点 Split 1)パティ 値 0.21 5.61 0.38 32.25 3.13 	0.00 景; ポーネントをDBから 気図上に表示 ✓ (0 最小 0.00 1.00 0.00 0.00 0.00	た: 1.00 読み込む [方位) 1 3)[1 (最大 1.00 40.00 90.00 60.00	極点図から フィッティ コンポーネン (2↓ 厚 (2↓ 厚 (2) 2 (2) 2 (2) 7 (2) 7 (2	計算 (ング: ▼ トをDBに保存 (油分率(%) 引順に並べ替え 年順に並べ替え なべ替えをクリア の列でグループパネルを 可選択を表示 ベストフィット ベストフィット (ストフィット) (ストフィット) (コルターエディタ (PSを表示)	, 化 表示 すべての列) 7				
コンポーネント定 ランダムの分率 0 体積分率 (%): 78 コンポーネント N タイプ 4 ▶ 1 . ▼ TD-1 コンポーネントプロ パラメーター 分率 FWHM (°) ♀1 (°) ♀2 (°)	 まの ホワクト・ ホワククト・ ホワクト・ 	0.00 最: ポーネントをDBから 気図上に表示 ✓ (0 最小 0.00 1.00 0.00 0.00 0.00	大: 1.00 読み込む 方位) 1 3)[1 (最大 1.00 40.00 90.00 90.00 60.00	極点図から フィッティ コンポーネン (2↓ 厚 (2↓ 厚 (2↓ 厚 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	計算 (ング: ♪ トをDBに保存 諸合分率(%) 副順に並べ替え を(物) の列でグループ・パネルを の列でグループ・パネルを の列でグループ・パネルを の列でスト フィット ベスト フィット	, 化 表示 すべての列) 7				

|N タイプ 名称 色 極点図上に表示 方位 |1_____ peakComponent TD-Split #FF99CCA7 チェックあり (1 0 3)[0 -1 0] 20.5↓

体積分率(%)

8.2 データの読み込み

MCPSchmidFactorCalc3 3.03 by CTR PDuser HelperTex CTR

File Help Text SlipProfile Magnesium abs(SF)

3指数から4指数に変換し読み込まれ、計算が行われます。

9. $A-Type-B-Type\mathcal{O}VolumeFraction$

No	Texture Component		On	Distributior	n <mark>F</mark>	FWHM 🖗	гvнмФ	FWHM 🖗	Volume Fraction		Show Sym. Eq.
1	{013}<-3-62>	Ŧ	$\overline{\lor}$	Gauss 🕞	-	10.0	10.0	10.0	25	%	{013}<-3-62>
2	{-1 2 5}< 2 1 0>	Ŧ	$\overline{\lor}$	Gauss 🕞	-	10.7	10.0	10.0	27	%	Calculation Mode
3	{123}<11.1>	Ŧ	$\overline{[\forall]}$	Gauss 🕞	-	10.0	10.0	10.1	22	%	Automatic Manual
4	{154}<1-11>	Ŧ		Gauss 🕞	-	10.1	10.0	10.3	26	%	
5	{ 90., 54.74, 45.}	Ŧ		Gauss 🕞	-	10.0	10.0	10.0	2	%	Max. Iteration Number : 🚺 1,000 📑
6	{ 0., 35.26, 45.}	Ŧ		Gauss 🕞	-	10.0	10.0	10.0	10	%	Max. Fit Error % (*1000) : 🚺 100 📑
7	{ 0., 25.24, 45.}	Ŧ		Gauss 🕞		10.0	10.0	10.0	10	%	1001
8	{ 39.23, 65.91, 26.5} copper	Ŧ		Gauss 🕞	-	10.0	10.0	10.0	10	%	Iteration : 1001
9	{ 74.21, 45., 90.}	Ŧ		Gauss 🕞	-	10.0	10.0	10.0	10	%	Fit Error% (*1000) : 4301.
10	{ 27.03, 57.69, 18.43}	Ŧ		Gauss 🕞	-	10.0	10.0	10.0	10	%	Fit Calculation Progress
	Max. Orientation Set Set from Data	bas	e (sc	ort by 👻	Sa	ive Curren	t Set Ba	ickground	0	%	

œ	ð,

	-45.0	- 4	5.0	-45.	0			45	.0	-45.0	0 45.0
No	Texture Component		On	Distributi	on	FYHM 🖗	ғунмФ	FWHM 🖗	Volume Fraction		Show Sym. Eq.
1	{013}<-3-62>	-	$\overline{ \lor }$	Gauss	$\overline{\mathbf{v}}$	10.0	10.0	10.0	25	%	{013}<-3-62> ▼
2	{-1 2 5}< 2 1 0>	-	$\overline{\lor}$	Gauss	$\overline{\mathbf{v}}$	10.0	10.0	10.0	25	%	Calculation Mode
3	{ 1 2 3}< 1 1.1>	-	$\overline{ { } \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Gauss	$\overline{\mathbf{v}}$	10.2	10.3	10.4	23	%	Automatic Manual
4	{ 1 5 4}< 1 -1 1>	-	$\overline{\lor}$	Gauss	$\overline{\mathbf{v}}$	10.4	10.4	10.4	27	%	
5	{ 90., 54.74, 45.}	-		Gauss	Ŧ	10.0	10.0	10.0	2	%	Max. Iteration Number : 🚺 1,000 📑
6	{ 52.87, 74.5, 33.69}	-		Gauss	Ŧ	10.0	10.0	10.0	10	%	Max. Fit Error % (*1000) : 🚺 100 📑
7	{ 0.0, 45., 0.} goss	-		Gauss	Ŧ	10.0	10.0	10.0	10	%	973
8	{ 0.0, 18.43, 0.0}	-	\square	Gauss	$\overline{\mathbf{v}}$	10.0	10.0	10.0	10	%	Iteration : 575
9	{ 39.23, 65.91, 26.5} copper	-		Gauss	Ŧ	10.0	10.0	10.0	10	%	Fit Error% (*1000) : 2949.
10	{ 0., 35.26, 45.}	-		Gauss	Ŧ	10.0	10.0	10.0	10	%	Fit Calculation Progress
I ► Line	Max. Orientation Set Set from Data	taba:	e (so	rt by 🚽	9	Save Curren	t Set Ba	ackground	0	%	

ほぼ同一結果が得られる