Hexagonal の為の軸変換ソフトウエア

HexaConvertソフトウエア

Ver.1.13

HexaConvert 1.12ST[25/12/31] by CTR − □ ×		
A 🗆 X-Axis[100] ([2-1-10]) 🗼 B 🛛 X-Axis[210] ([10-10])		
MIller Notation (3Axis Notation)		
HexaConvert 1.12ST[25/12/31] by CTR A N= X-Axis[100] ([2-1-10]) A X-Axis[100] ([2-1-10]) A X-Axis[210] ([10-10]) Miller Notation (3Axis Notation) O 1 4 2 2 4 1 Hki uvvv Miller Braveis Notation/4 Axis Notation) O 1 - 1 4 2 2 2 1 Hki uvvv Euler(p1Fp2) 90.0 24.627 30.0 Material select Titanium-alpha.TXT C/a 1.588 Input ψ2 Angles 0 Calc DISP BG Corr Black Line size 1.0 MINUS Polefigure FWHM 5 degree Polefigure OK Return Structure		
Convert 1.12ST[25/12/31] by CTR $-$ × ap Help A \sim Axis[100] ([2-1-10]) \land B \sim X-Axis[210] ([10-10]) \land Notation (3Axis Notation) D \sim 1 \sim 4 \sim 2 \sim 4 \sim 1 \sim hk1 uvv Bravais Notation(4 Axis Notation) \sim 1 \sim 1 4 \sim 0 \sim 2 \sim 2 1 \sim hk1 uvv Euler(p1Fp2) \circ 90.0 24.627 30.0 Material select Titanium-alpha.TXT \sim c/a 1.588 Input ψ 2 Angles 0 Calc P Position 10 \sim Disp size 200 \sim DISP BG Corr Black \sim Line size 1.0 \sim MINUS efigure VHM 5 degree Polefigure 1.1.1 \circ Orthorhombic Disp OK Return Structure		
HexaConvert 1.125T[25/12/31] by CTR - × Step Help A ×-Axis[100] ([2-1-10) Miller Notation (3Axis Notation) O 1 4 - 2 - 4 1 hki uvw filler Bravais Notation(4 Axis Notation) O 1 - 1 4 0 - 2 2 1 hki uvvw Euler(p1Fp2) 90.0 24.627 30.0 Material select Titanium-alpha.TXT c/a 1.588 Input ψ2 Angles O Calc DISP Position 10 Disp size 200 DISP BG Corr Black Line size 1.0 MINUS Polefigure FWHM 5 degree Polefigure 1.1.1 O Orthorhombic Disp OK Return Structure		
HexaConvert 1.12ST[25/12/31] by CTR $-$ × 2 Step Help Miller Notation (3Axis Notation) 0 1 4 -2 4 1 hkl uvw A $-2 4 1 hkl uvw$ A $-2 4 1 hkl uvw$ A $-2 4 1 hkl uvw$ 1 -2 4 1 hkl uvw 1 -2 2 4 1 hkl uvw 1 -2 2 2 1 hkl uvww 1 -2 2 2 1 hkl uvww 2 -2 2 2 2 1 hkl uvww 2 -2 2 2 1 hkl uvww 2 -2 2 2 1 hkl uvww 2 -2 2 2 1 uvww 2 -2 2 2 uvww 2 -2 2 2 1 uvww 2 -2 2 2 1 uvww 2 -2 2 2 uvww 2 -2 2 1 uvww 2 -2 2 2 uvww 2 -2 2 2 uvww 2 -2 2 2 uvww 2 -2 2 2 uvwww 2 -2		
90.0 24.627 30.0		
HexaConvert 1.12ST[25/12/31] by CTR – × a Step Help A X-Axis[100] ([2-1-10) A B X-Axis[210] ([10-10) Miller Notation (3Axis Notation) @ 0 1 4 2 2 4 1 A Hel UVW Miller Bravais Notation/ 0 1 4 2 2 4 1 A Hel UVW Euler(p1Fp2) 90.0 24.627 30.0 Material select Titanium-alpha.TXT c/a 1.588 Input ψ2 Angles 0 Calc DISP Position 10 Disp size 200 DISP BG Corr Black Line size 1.0 MINUS Polefigure FWHM 5 degree Polefigure 1,1,1 O Orthorhombic Disp OK Return Structure		
A > Axis[100] (2-1-10) B X Axis[210] ([10-10) Miller Notation (3Axis Notation) 0 1 4 -2 -4 1 hkl uvw Miller Bravais Notation(4 Axis Notation) 0 -2 2 1 hkl uvw Miller Bravais Notation(4 Axis Notation) 0 -2 2 1 hkl uvw 0 1 -1 4 0 -2 2 1 hkl uvw 0 1 -1 4 0 -2 2 1 hkl uvw 0 1 -1 4 0 -2 2 1 hki uvw 0 1 -1 4 0 -2 2 1 w <td< td=""></td<>		
c/a 1.588 Input ψ2 Angles 0 Calc		
DISP		
Position 10 V Disp size 200 V DISP		
BG Corr Diack C Line size 1.0 Minus		
Polefigure		
FWHM 5 degree Polefigure 1,1,1 O Orthorhombic Disp		
OK Return Structure		
BG Corr Black Line size 1.0 MINUS Polefigure FWHM 5 degree Polefigure 1,1,1 Orthorhombic Disp OK Return Structure		

非対称(φ1:0->360、Φ:0->90、φ2:0->90)対応

操作して不都合がありましたら odftex@ybb.ne.jp へ連絡下さい。

修正履歴

- * Ver.1.000 2010/09/09 material select 追加
- * Ver.1.001 2011/06/14 *φ* 2>60 の修正
- * Ver.1.001 2011/07/05 直行条件案内リストをサポート (Option)
- *Ver.101Y 2012/09/12 新しい管理に移行
- *Ver1.02Y 2013/01/31 結晶方位図表示ソフトウエア Disp3DHex と連動
- *Ver1.03Y 2014/08/09 Euler 角度入力に対応
- *Ver1.04Y 2014/10/06 Disp3DTriclinic2 で表示
- *Ver1.05Y 2014/10/07 Btype >AType では Euler 角度 φ 2 が+30 から-30 に変更
- *Ver1.06Y 2015/01/10 最大指数99、{h,k,l}<u,v,w>表示に変更
- *Ver1.08Y 2015/03/30 非対称ODFの見直しと CrystalOrientationDisp との連携
- *Ver1.10 2018/07/16 φ1=0のオペレーション変更
- *Ver1.11 2019/02/03 Condition save で Euler 角度も save
- *Ver1.12 2025/01/12 極点図Createの追加
- *Ver1.13 2025/01/13 バク修正

- 目次
- 1. 概要
- 2. 表記方法
- 3. 直交座標系
- 4. 3Axis、4Axis変換式
- 5. ソフトウエアの使い方
- 6. 計算例
 - 6.1 (0001)[10-10]の場合
 - 6.2 (01-13)[2-1-10]の場合
- 7. Option 機能、h k l 、u v w の l i s t 表示
- 8. Euler角度入力
- 9. Disp3DTriclinic2との連動
- 10. φ1が90度以上の場合
- 11. 繰り返し同一データの使用
- 12. 極点図のcreate
 - 12.1 Hexagonalの対称性

1. 概要

Hexagonal系では表記方法が2種類、直行座標系表記に2種類ある。

この相互変換を1画面で行えるソフトウエアを提供する。

結晶法図との連動(Ver.1.02 以降)

2. 表記方法

Miller Notation (3 Axis Notation)

Miller-Bravais Notation (4 Axis Notation) 3. 直交座標系

x : [1 0 0], y : [1 - 2 0], z : [0 0 1]x : [2 - 1 - 1 0], y : [0 - 1 1 0], z : [0 0 0 1]

Euler角度からMillerIndeices変換

$$\begin{bmatrix} h\\k\\i\\l \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\0 & 1 & 0\\-\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\0 & 0 & c/a \end{bmatrix} \begin{bmatrix} \sin\phi_2 \sin\phi\\\cos\phi_2 \sin\phi\\\cos\phi \end{bmatrix}$$
$$\begin{bmatrix} u\\v\\t\\w \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} & -\frac{1}{3} & 0\\0 & \frac{2}{3} & 0\\-\frac{1}{\sqrt{3}} & -\frac{1}{3} & 0\\0 & 0 & a/c \end{bmatrix} \begin{bmatrix} \cos\phi_1 \cos\phi_2 - \sin\phi_1 \sin\phi_2 \cos\phi\\-\cos\phi_1 \sin\phi_2 - \sin\phi_1 \cos\phi_2 \cos\phi\\\sin\phi_1 \sin\phi \end{bmatrix}$$

 $\Phi = 0$ の場合、 $\phi 1 + \phi 2$ が計算されるが、単独には計算されません。 手入力による変更は可能にしています。

5. ソフトウエアの使い方

-	•	-		-	~~·		~ ~		
	C:	¥C	TR	¥b	in¥	F	lexaConvert.	jar	を起動

HexaConvert 1.10ST[19/03/30] by CTR -	
A □ X-AXIS[100] ([2-1-10])	
Miller Notation (3Axis Notation)	
Euler(p1Fp2) 0.0 46.418 30.0	
Material select	
AluminumOxide2.TXT	
c/a 2.73 Input ψ2 Angles 0 Calc	
DISP	
Position 10 Y Disp size 200 Y DISP	
BG Corr Black Y Line size 1.0 Y MINUS	
OK Return Structure	
A □ X-Axis[100] ([2-1-10])	医檀系の切り萃え
カチード切り基ク	
「MIller Notation (3Axis Notation)	
Miller Bravais Notation(4 Axis Notation)	
Eular Angle(fai1,FALfai2)	
0.0	
Linguine li My I (CDD登録で
exagonalの名称を表示、選択で軸比変更が可能	
1.625 Input w2 Angles 0 Calc	
此の入力(1. 625でマグネシウム用である)	
nput ψ2 Angles 0 はEuler角度が定まらない場合のφ2;	角度指定
Calc は、Euler角度計算と軸変換を行う。	
指数変換時 指定指数が表色に変わる事があります (直行条件が崩れた)	 書合)
10	<i>9の</i> ひ卦質をわずいて吐べ
しるICLEuIEI 用及 M M 巴に変わる笏合、 $\Psi - U$ じ ϕ $I + \phi$	ムツの可昇されている時で

In	put	ພ2	Ana	les
	put.	Ψ	/ W 154	

0

で φ 2 を 指定して下さい。

- 6. 計算例
- 6.1 (0001)[10-10]の場合

A	(-Axis[100] ([2-1-10]) 🗼 B 🗹 X-Axis[210] ([10-10]) 🕂
MIller Notation	(3Axis Notation)
	0 ∨ 1 ∨ 2 ∨ 1 ∨ 0 ∨ hkl uvw
Miller Bravais No	vtation(4 Axis Notation)
	Euler(p1Fp2)
Mate	rial select
Мар	jnesium.TXT v
	c/a 1.625 Input ψ2 Angles 0.0 Calc
DISP	
Positio	n 10 v Disp size 200 v DISP
BG Co	rr Black Y Line size 1.0 Y MINUS
1	OK Return Structure
A Contraction	HexaConvert 1.10ST[19/03/30] by CTR -
Maner Hotekion	(-Axis[100] ([2-1-10])
	(Axis Notation) (3Axis Notation) 2 v 1 v 2 v 1 v 0 v hkl uvw
Miller Bravais No	(Axis I00] (12-1-10])
Miller Bravais No	$(Axis[100]([2-1-10]) \land B \lor X-Axis[210]([10-10]) \land (Axis Notation) \land (Axis Notation$
Miller Bravais N	$(-Axis[100](12-1-10]) \land B \lor X-Axis[210](110-10]) \land (3Axis Notation) \land (3Axis Notation) \land (2 \lor 1 \lor 0 \lor hkl uvw) \land (4Axis Notation) \land (4Axis Notation) \land (1 \lor 0 \lor -1) 0 \lor hkil uvxw) \land (2 \lor 1 \lor 0 \lor -1) 0 \lor hkil uvxw) \land (2 \lor 1 \lor 0 \lor -1) 0 \lor hkil uvxw) \land (2 \lor 1 \lor 0 \lor -1) 0 \lor hkil uvxw) \land (2 \lor 1 \lor 0 \lor -1) 0 \lor hkil uvxw) \land (2 \lor 1 \lor 0 \lor -1) 0 \lor hkil uvxw) \land (2 \lor 1 \lor 0 \lor -1) 0 \lor hkil uvxw) \land (2 \lor 1 \lor 0 \lor -1) 0 \lor hkil uvxw) \land (2 \lor 1 \lor 0 \lor -1) 0 \lor hkil uvxw) \land (2 \lor 1 \lor 0 \lor -1) 0 \lor hkil uvxw) \land (2 \lor 1 \lor 0 \lor -1) 0 \lor hkil uvxw) \land (2 \lor 1 \lor 0 \lor -1) 0 \lor hkil uvxw) \land (2 \lor 1 \lor 0 \lor -1) 0 \lor -1) 0 \lor (2 \lor 0 \lor $
Miller Bravais N	$(-Axis[100]([2-1-10]) \land B \land X-Axis[210]([10-10]) \land Axis[210]([10-10]) $
Miller Bravais N 0 0 0	$(Axis [100] (12-1-10]) \land B \land Axis [210] (110-10]) \land Axis Notation) \land B \land Axis Notation) \land B \land Axis Notation) \land B \land B \land Axis Notation) \land B \land $
Miller Bravais N	$(Axis[100]([2-1-10]) \land B \land Axis[210]([10-10]) \land Axis[Axis[Axis[Axis[Axis[Axis[Axis[Axis[$
Miller Bravais N	$(-Axis[100](2-1-10]) \land B \lor X-Axis[210]((10-10)) \land Axis Notation) \land 1 \lor 2 \lor 1 \lor 0 \lor hkl = uvw \Rightarrow 0 \land 1 \lor 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 1 \lor 0 \lor -1 \circ hkl = uvxw \Rightarrow 0 \land 0 \lor 0 \lor$
DISP DISP DISP DISP DISP DISP	$(Axis I 100) ((2-1-10)) \land B \lor X Axis (210) ((10-10)) \land Axis (210) ((10-10)) ((10-10)) \land Axis (210) ((10-10)) $
DISP Positio BG Co	$(Axis I 100) (I2-1-10)$ $(Axis Notation)$ $(Axis Notation)$ $(Axis Notation)$ $(Axis Notation)$ $(Axis Notation)$ $(I \rightarrow 1 \rightarrow 0 \rightarrow -1 \ 0 \rightarrow hkil \ uvxw$ $Euler(p IFp2)$ $(0.0 \ 0.0 $

3軸表記では(001)[210]である事分かります。

HexaConvert 1.1051[19/03/30] by CTR
A ♥ X-Axis[100] ([2-1-10])
MIller Notation (3Axis Notation)
0 1 2 1 0 hki uvw
Miller Bravais Notation(4 Axis Notation)
Magnesium.TXT V
c/a 1.625 Input ψ2 Angles 30.0 Calc
DISP
Position 10 V Disp size 200 V DISP
BG Corr Black V Line size 1.0 V MINUS
OK Return Structure
Input ψ2 Angles 30.0 Calc で確認 # HexaConvert 1.10ST[19/03/30] by CTR - □ ▲
Input ψ2 Angles 30.0 Calc で確認
Input ψ2 Angles 30.0 Calc で確認 HexaConvert 1.10ST[19/03/30] by CTR - □ × File Step Help A ☑ X-Axis[100] ([2-1-10]) 上 B □ X-Axis[210] ([10-10]) 上
Input ψ2 Angles 30.0 Calc で確認 4 HexaConvert 1.10ST[19/03/30] by CTR - □ × File Step Help A ☑ X-Axis[100] ([2-1-10])
Input ψ2 Angles 30.0 Calc で確認 HexaConvert 1.10ST[19/03/30] by CTR - □ × File Step Help ▲ ● X-Axis[100] ([2-1-10])
Input ψ2 Angles 30.0 Calc で確認 HexaConvert 1.10ST[19/03/30] by CTR - □ × File Step Help ▲ ♥×-Axis[100] ([2-1-10])
Input ψ2 Angles 30.0 Calc で確認 MexaConvert 1.10ST[19/03/30] by CTR - □ ▲ File Step Help ▲ ●×-Axis[100] ([2-1-10])
Input ψ2 Angles 30.0 Calc で確認 HexaConvert 1.10ST[19/03/30] by CTR
Input ψ2 Angles 30.0 Calc で確認 HexaConvert 1.10ST[19/03/30] by CTR
Input ψ2 Angles 30.0 Calc で確認
Input ψ2 Angles 30.0 Calc で確認 ▲ ● A ● X - Axis[100] ((2-1-10)) ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
Input ψ2 Angles 30.0 Calc で確認 メームマン語の 「日本の名の「(2-1-10)」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
Input ψ2 Angles 30.0 Calc で確認
Input ψ2 Angles 30.0 Calc で確認
Input ψ2 Angles 30.0 Calc で確認 MacConvert 1.10ST[19/03/30] by CTR

である事が分かります。

6. 2(01-13)[2-1-10]の場合

HexaConvert 1.10ST[19/03/30] by CTR – 🗆 🗙						
File Step Help						
A □ X-Axis[100] ([2-1-10])						
MIller Notation (3Axis Notation) Image: Constraint of the second secon						
Miller Bravais Notation(4 Axis Notation) 0 0 0 0 1 0 -1 0 hkil uvxw						
Euler(p 1Fp 2) □ 0.0 30.0						
Material select						
Magnesium. TXT V						
c/a 1.625 Input ψ2 Angles 30.0 Calc						
DISP						
Position10Disp size200DISPBG CorrBlackLine size1.0MINUS						
OK Return Structure						

Calc

T

HexaConvert 1.10ST[19/03/30] by CTR
File Step Help
A □ X-Axis[100] ([2-1-10])
MIller Notation (3Axis Notation) Image: Constraint of the second secon
Miller Bravais Notation(4 Axis Notation) 0 -1 -1 2 -1 -1 0 hkil uvxw
Euler(p1Fp2) 0.0 32.024 30.0
Material select Magnesium.TXT
c/a 1.625 Input ψ2 Angles 30.0 Calc
DISP
Position 10 V Disp size 200 V DISP
BG Corr Black V Line size 1.0 V MINUS
OK Return Structure

3 軸表記で(013)[100]であり、Euler 角度は(0.0,32.024,30.0)

3軸表記に切り替えて、再計算しても値は変わりません。

MIller Notation (3Axis Notation)		
☑ 0 • 1 • 3 •	1 • 0 • 0 •	
Miller Bravais Notation(4 Axis Notation) —		
□ 0 · 1 · -1 3 ·	2 -1 -1 0	Ŧ

7. Option機能、hkl、uvwのlist表示

_MIIIer Notation (3Axis Notation)	
で<100>に対する{hkl}の list を表示	<mark></mark> で{013}に対する <uvw>を表示</uvw>
{0 -15 -14}<1 0 0>	{0 1 3}<-15 -12 4>
{0 -15 -13}<1 0 0>	{0 1 3}<-15 -6 2>
{0 -15 -11}<1 0 0>	{0 1 3}<-15 -3 1>
(0 1 -2}<1 0 0>	{0 1 3}<1 -6 2>
(0 1 -1}<1 0 0>	{0 1 3}<1 -3 1>
(0 1 0}<1 0 0>	{0 1 3}<1 0 0>
(0 1 1}<1 0 0>	{0 1 3}<1 3 -1>
(0 1 2}<1 0 0>	{0 1 3}<1 6 -2>
{0 15 11}<1 0 0>	{0 1 3}<15 3 -1>
{0 15 13}<1 0 0>	{0 1 3}<15 6 -2>
{0 15 14}<1 0 0>	{0 1 3}<15 12 -4>

Miller Bravais Notation(4 Axis Notation)	✓ -1 0 ✓ hkil uvxw
同様に hkil で{hkil}に対する <uvxw></uvxw>	uvxw で{uvxw>に対する{hkil}を表示
{0 -15 15 -14}<2 -1 -1 0> {0 -15 15 -13}<2 -1 -1 0> {0 -15 15 -11}<2 -1 -1 0> {0 -15 15 -8}<2 -1 -1 0> {0 -15 15 -8}<2 -1 -1 0>	{0 1 -1 3}<-15 -12 27 13> {0 1 -1 3}<-15 -9 24 11> {0 1 -1 3}<-15 -3 18 7>

8. Euler角度入力

90		24.6	30.0		
Material select — Titanium.TXT					~
c/a	1.587	Input ψ27	Angles	30.0	Calc

Euler角度を入力し、Calcで3指数、4指数表記計算を行う。

Euler角度入力では本来、実数の MillerIndices が計算されるが、整数の MillerIndices では

Euler角度と一致しない。

例えば、Euler 角度{50,50,50}で計算した MillerIndices は以下であるが、

🛛 HexaConvert 1.10ST[19/03/30] by CTR – 🗆 📉					
File Step Help					
A □ X-Axis[100] ([2-1-10])					
MIller Notation (3Axis Notation) I 1 2 4 0 -2 1 v hkl uvw					
Miller Bravais Notation(4 Axis Notation) 1 2 3 4 2 4 2 3 hkil uvxw					
Euler(p1Fp2) 50 50 50					
Material select Titanium.TXT					
c/a 1.587 Input ψ2 Angles 50.0 Calc					
∫ DISP ─────					
Position 10 v Disp size 200 v DISP					
BG Corr Black V Line size 1.0 V MINUS					
OK Return Structure					

計算された MIllerIndices で再計算した Euler 角度は異なります。

Miller Bravais I	Notation(4 Axis No	otation) ——					
✓ 1 v 2	2 🗸 -3	4 ¥	2 ¥	-4 v 2	3 🗸	hkil	UVXW
	Euler(p1Fp2)						
	53.6	9 5	0.477	49.11			
г Ма	terial select						
Tit	anium.TXT					~	
<u></u>							
	c/a	1.587	Input ψ	2 Angles	50.0	Calc	

9. Disp3DTriclinic2との連動

22	HexaConvert 1.10ST[19/03/30] by CTR – 🗆
File St	ep Help
	A □ X-Axis[100] ([2-1-10])
Miller	r Notation (3Axis Notation)
	1 v 1 v 1 v 0 v -1 v 1 v hkl uvw
[Miller	Bravais Notation(4 Axis Notation)
	1 v 1 v -2 1 v 1 v -2 v 1 3 v hkil uvxw
	Euler(p1Fp2)
	62.5 72.512 60.0
	Material select
	Titanium.TXT V
	c/a 1.587 Input ψ2 Angles 50.0 Calc
DIS	P
	Position 10 Y Disp size 200 Y DISP
	BG Corr Black Y Line size 1.0 Y MINUS
	OK Return Structure
で計算し	た結果の結晶方位図を表示する
Position	は、結晶方位図画面の表示位置
Dispsize	は、表示画面のサイズ
BG Corr	は、表示画面のバックグランドの色、黒と白の選択
Linesize	は、表示画面に使用している線幅
A	X-Axis[100] ([2-1-10])
ABの選	出で Atyme と Btyme の表示切り株文
r,D ♥)æ	meters Augure これなりの有た。
- Miller Pr	avais Notation(4 Avis Notation)
った券	4指数を切り替える。

Btype の4指数

変わるのは、X軸とY軸、AとBで ϕ 2Euler角度である。

Atype と Btype の E u l e r 角度 ø 2 に 関して

B t y p e $-\!>\!A\,T$ p t e

Euler角度φ2に関して

ATуре=BTуре-30である。

本ソストウエアで確認

Btype の(-124)[]210]で Calc->(0.0,38.432,0.0)が得られる

(通常は、h k l は全てマイナス指定ではなく、プラスを指定する)

A 🖂 X-Axis[100] ([2-1-10]) \checkmark B 🖉 X-Axis[210] ([10-10]) \checkmark
MIller Notation (3Axis Notation)
$\boxed{2 \cdot 1 \cdot 2 \cdot 4 \cdot 2} = 2 \cdot 1 \cdot 0 \cdot hkl uvw$
Miller Bravais Notation(4 Axis Notation)
Eular Angle(fai1,FALfai2)
0.0 38.432 0.0
Material select
Titanium.TXT 🔹
c/a 1.587 fai2 0 - Calc

Btype の(0.0,38.432,60.0)で Calc ——>(114)[1-10]が得られる

A □ X-Axis[100] ([2-1-10])	
MIller Notation (3Axis Notation) Image: I	UVW
Miller Bravais Notation(4 Axis Notation) I 1 -2 4 1 -1 0 0 hkill	UVXW
Euler(p1Fp2)	
Material select Titanium.TXT	
c/a 1.587 Input ψ2 Angles 60.0 Calc	

AType の(0.0,38.432,30.0)で Clac—>(114)[1-10]が得られる

A ☑ X-Axis[100] ([2-1-10]) . B □ X-Axis[210] ([10-10])	+
Miller Notation (3Axis Notation)	
	hkl uvw
Miller Bravais Notation(4 Axis Notation)	
	hkil uvxw
Euler(p1Fp2)	
☑ 0.0 38.432 30	
Material select	
Titanium.TXT	~
c/a 1.587 Input ψ2 Angles 30.0	Calc

10. *φ*1が90度以上の場合

HexaConvert 1.10ST[19/03/30] by CTR
File Step Help
A □ X-Axis[100] ([2-1-10])
Miller Notation (3Axis Notation)
Miller Bravais Notation/ -20 v 13 v 7 11 v hkit uvxw
Euler(p Fp2) 135 45 45
Material select
Titanium.TXT 🗸
c/a 1.587 Input ψ2 Angles 45.0 Calc
Position 10 V Disp size 200 V DISP
BG Corr White v Line size 1.0 v MINUS
OK Return Structure

HexaConvert 1.10ST[19/03/30] by CTR – 🗆 🗙
File Step Help
A □ X-Axis[100] ([2-1-10])
Miller Notation (3Axis Notation)
Miller Bravais Notation(4 Axis Notation) 1 v 3 v 4 6 v 5 v 1 v 4 3 v hkil
Euler(p1Fp2) I 135 45 45
Material select
Titanium.TXT v
c/a 1.587 Input ψ2 Angles 45.0 Calc
Position 10 V Disp size 200 V DISP
BG Corr White V Line size 1.0 V MINUS
OK Return Structure

(135,45,45)から(13-46)[-5143]が 得られる

A $\ Axis[100]((2-1-10))$ B $\ Axis[210]((10-10))$ MIller Notation(4 Axis Notation) $\ 1 \lor 3 \lor 6 \lor -3 \lor -1 \lor 1 \lor$ Hkl uvw Miller Bravais Notation(4 Axis Notation) $\ 1 \lor 3 \lor 4 \land 6 \lor 5 \lor 1 \lor 4 \land 3 \lor$ Hkil uvxw ExtertpTFp2) $\ 135.98 47.757 43.9$ Material select Titanium.TXT $\ c/a \ 1.587$ Input $\ \psi 2$ Angles 45.0 Calc DISP Position 10 $\ Disp size$ 200 $\ DISP$ BG Corr White $\ Line size$ 1.0 $\ MINUS$	ile Step Help
$\begin{tabular}{ c c c c c } \hline Miller Notation & Miller Notation & Miller Notation & Miller Bravais Notation & Miller & Line Size & 1.0 & Miller & Miller Bravais Notation & Miller & Miller Bravais Notation & Miller Bravais Notation & Miller & Miller Bravais Notation & Miller & $	A □ X-Axis[100] ([2-1-10])
Miller Bravais Notation(4 Axis Notation) $\boxed{1}$ 3 $\sqrt{4}$ 6 $\sqrt{5}$ $\sqrt{1}$ $\sqrt{4}$ 3 $\sqrt{1}$ hkill uvxww $\boxed{1}$ 3 $\sqrt{4}$ 6 $\sqrt{5}$ $\sqrt{1}$ $\sqrt{4}$ 3 $\sqrt{1}$ hkill uvxww $\boxed{1}$ 3 $\sqrt{4}$ 6 $\sqrt{5}$ $\sqrt{1}$ $\sqrt{4}$ 3 $\sqrt{10}$ hkill uvxww $\boxed{1}$ 3 $\sqrt{4}$ 6 $\sqrt{5}$ $\sqrt{1}$ $\sqrt{4}$ 3 $\sqrt{10}$ hkill uvxww $\boxed{1}$ 3 $\sqrt{4}$ 6 $\sqrt{5}$ $\sqrt{1}$ $\sqrt{4}$ 3 $\sqrt{10}$ hkill uvxww $\boxed{1}$ 3 $\sqrt{4}$ 6 $\sqrt{5}$ $\sqrt{1}$ $\sqrt{4}$ 3 $\sqrt{10}$ hkill uvxww $\boxed{1}$ 3 $\sqrt{4}$ 6 $\sqrt{5}$ $\sqrt{1}$ $\sqrt{4}$ 3 $\sqrt{10}$ hkill uvxww $\boxed{1}$ 3 $\sqrt{15}$ $\sqrt{10}$	Miller Notation (3Axis Notation) 1 1 3 6 -3 -1 1 with the second seco
Extert(p1Fp2) 135.98 47.757 43.9 Material select Titanium.TXT c/a 1.587 Input ψ 2 Angles 45.0 Calc DISP Position 10 BG Corr White Line size 1.0 MINUS	Miller Bravais Notation(4 Axis Notation)
I35.98 47.757 43.9 Material select Itanium.TXT c/a 1.587 Input ψ2 Angles display="block">DISP Position 10 V Disp size 200 V BG Corr White Line size Disp 1.0 MINUS	Euter(pTFp2)
Material select Titanium.TXT c/a 1.587 Input ψ2 Angles 45.0 Calc DISP Position 10 V Disp size 200 V DISP BG Corr White V Line size 1.0 V MINUS	135.98 47.757 43.9
Titanium.TXT v c/a 1.587 Input ψ2 Angles 45.0 Caic DISP Position 10 v Disp size 200 v DISP BG Corr White v Line size 1.0 MINUS	Material select
c/a 1.587 Input ψ2 Angles 45.0 Calc DISP Position 10 v Disp size 200 v DISP BG Corr White v Line size 1.0 v MINUS	Titanium.TXT v
DISP Position 10 v Disp size 200 v DISP BG Corr White v LIne size 1.0 v MINUS	c/a 1.587 Input ψ2 Angles 45.0 Calc
Position 10 v Disp size 200 v DISP BG Corr White v Line size 1.0 MINUS	∫ DISP
BG Corr White v Line size 1.0 v MINUS	Position 10 v Disp size 200 v DISP
	BG Corr White v Line size 1.0 v MINUS
OK Return Structure	OK Return Structure

(13-46)[-5143]から (135.61,47.757,43.9)が計算されます

11.繰り返し同一データの使用

GPODFDisplayなどで使用する場合、同一物質画面が必要になります。 選択せずに同一物質を表示させるには、物質をsaveさせて下さい。

HexaConvert 1.10ST[19/09/30] by CTR ×				
File Step Help				
Condition save				
100] ([2-1-10])				
- Miller Notation (20via Notation)				
Miller Bravais Notation(4 Axis Notation)				
□ 0 v 1 v -1 4 v 0 v -2 v 2 1 v hkil uvxw				
Euler(p1Fp2)				
90.0 24.627 30.0				
Material select				
Titanium.TXT 🗸				
c/a 1.587 Input ψ2 Angles 0 Caic				
DISP				
Position 10 Y Disp size 200 Y DISP				
BG Corr Black V Line size 1.0 V MINUS				
OK Return Structure				

12. 極点図のcreate

方位から極点図の作成を行う。

HexaConvert 1.12ST[25/12/31] by CTR	– 🗆 X
File Step Help	
A 🗆 X-Axis[100] ([2-1-10]) 🗼 B 🗹 X-Axis[210] ([10-10])	
MIller Notation (3Axis Notation) □ 1 ∨ 1 √ 1 ∨	hkl uvw
Miller Bravais Notation(4 Axis Notation) $1 \sim 1 \sim -2 2 \sim -1 \sim -1 \sim 2 3 \sim -1 \sim -1 \sim 2$	hkil uvxw
Euler(p1Fp2) 90.0 57.8 60.0	
Material select Titanium-alpha.TXT	✓
c/a 1.588 Input ψ2 Angles 0 C	alc
Position10 \checkmark Disp size200 \checkmark BG CorrBlack \checkmark Line size1.0 \checkmark	DISP
Polefigure FWHM 5 degree Polefigure 1,1,1 O Orthorhomb	ic Disp
OK Re	turn Structure

極点図create

12.1 Hexagonalの対称性

Hexagonalでは、3指数と4指数表現があるが、対称性を考えると4指数が適している。 極点図作成では4指数を取り込み、Triclinicで表現する。

{112} 極点図をTriclinicで表現すると

Triclinic->Orthorhombicで

とした。

内部計算は [チタンおよびチタン合金の集合組織] 井上博史氏の4指数から直交座標 (h k i 1) [u v t w] から(HKL) [UVW] に変換し方位計算を行った。

極点図表示に使用したデータは、

CTR¥work¥NewCubicCODispホルダに保存されます。 Calcで削除されます。