ステレオ三角形による等高線逆極点図を表示する

InverseCubicContourDisplayソフトウエア Ver1.05

逆極点図上のマウス移動に対し(β、φ)角度、密度、[hkl]の表示

2020年08月23日 HelperTex Office 材料軸方向に対する結晶方位を逆極点図で表すが、Cubicは対称性が高いため、 ステレオ三角形で表現されている。CTRソフトウエアでは、逆極点図は3Dで扱っていたが ODF図や極点図の等高線を表現も採用し、今回逆極点図の等高線化を行ってみました。 ODF図では、碁盤の目の様に矩形化した等高線探求を採用し、 振点図では、排対なODF図の広用で、佐形な(000-260)はして扱い、排画時、振座標準構

極点図では、非対称ODF図の応用で、矩形を(90,360)として扱い、描画時、極座標変換を 行うことで、実現出来ました。

逆極点図も(55,45)極点図として扱い、ステレオ三角形の大円部分の外側は、Polygonで マスクし、実現しました。この為、マスク部分が目立つケースもあります。

更に、外部起動も可能になりました。

逆極点図の表現を(β 、 ϕ)で表現します。

アプリケーション的に、大円の軌跡を扱う場合、(β 、 ϕ)で扱うと利点がある。

球面から、平面への変換は極点図と同様に扱います。

上記(55,45)は極点図の表現で、逆極点図で表すと(45,55)になります。

 $(\beta, \phi) - > [h,k,l]$

 $h = sin(\phi) * cos(\beta)$ k = sin(\phi) * sin(\beta) I = cos(\phi)

データフォーマット(TXT ファイル)

区切りは、tab、スペース、カンマ

beta 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	fai 0.0 5.0 10.0 20.0 25.0 30.0 35.0 40.0 50.0 55.0 10.0 55.0 10.0 25.0 30.0 25.0 30.0 35.0 40.0 25.0 30.0 35.0 40.0 55.0 10.0 55.0 10.0 55.0 20.0 25.0 25.0 25.0 25.0 20.0 20	intens 5.93 3.48 1.05 0.62 0.6 0.62 1.16 4.25 7.36 4.25 7.36 4.25 1.17 5.93 3.48 1.05 0.62 0.6 0.6 0.6 0.61 0.9 2.57 4.25 2.57 0.9 5.93 3.48 1.05 0.62 0.62 0.62 0.62
45.0	30.0	1.46
45.0	35.0	2.3
45.0	40.0	1.58
45.0	45.0	0.76
45.0	50.0	0.61
45.0	55.0	0.6

1 行目の beta fai intens は無視されます。				
(0,0)が逆極点図の[001]部分				
(0,45)は逆極点図の[101]部分				
beta,faiのステップ幅は、1、2.5,5とします。				
beta の範囲は0から45以上				
fai の範囲は0から55以上				

CTR ソフトウエアで作成される逆極点図入力データ

GPInverseDisplay ソフトウエアで各種 ODF から Export された逆極点ファイルを表示する際に C:¥CTR¥work¥GPInverseDisplay¥list.TXT として作成されているが、

GPInverseDisplay(Ver.1.02以降)で表示ファイルを選択したホルダにも作成されます。

📓 GPInverseDisplay 1.03T[16/10/31] by CTR						
File Help						
Material						
Image: Aluminum.TXT a 1.0 b 1.0 c 1.0 α 90.0 γ 90.0						
ODF						
✓ Labolex popLA StnadredODF TexTools Other						
Method Plane max index Direction max index- Plane Miller Nortation(3 Axis Nortation) 15 15						
Inverse data select Inverse Display/CGCS20%5deg/LaboTex/CW001-112.TPF List ND						
Inverse Display-						
Inverse max value 2D 3D Max value Window size 7.36 2D 0.3 < 1.0						
Level 3 Peak serach Inverse Disp						
ContourDisplayで自動起動されます。						
beta fai intens						
0.0 0.0 5.93						
U.U 00.U 1.10 0.0 40.0 4.95						
U.U 4U.U 4.20 0.0 4E.0 7.90						
U.U 40.U 7.50 0.0 50.0 4.95						
U.U 0U.U 4.20 0 0 FF 0 1 17						
0.0 0.0 0.33 F 0 F 0 0.40						
0.U 0.U 3.48 F 0 10 0 1 0F						
5.0 15.0 0.62 5.0 20.0 0.0						
ひ.U 2U.U U.D 入力ファイル						
回 001-112.TPF 5 KB TPF ファイル 2013/10/03 6:29						
Inverselist.TXT 2 KB テキスト文書 2016/03/21 5:32						
~ 作成された InverseCubicDisplay 用ファイル						

直接 jar ファイルから起動 C:¥CTR¥bin¥InverseCubicDisplay.jar のダブルクリック

ODFPoleFigure2 ソフトウエア->InverseTools->InverseCubicContourDisplay より

B ODFPoleFigure2 3.46YT[16/06/30] by CTR							
File	Linear(absolute)3D	ToolKit	Help	InitSet	BGMo	de Measure	Co
Files select ASC(RINT-PC)		PFtoC	DDF3				
		SoftWare					
		ImageTools					
		PopLATools					
Backe	roud delete mode DoubleMode OSingle	ODFAfterTools			Nothing BG	defoci	
Deale	ua 70 mm po sta 7	PoleOrientationTools		BG Scope 80			
reak s		DataBaseTools					
AbsCalc Schulz reflection metho		Fiber	Tools			en 133.0	1/c
L Defoc	us file Select	Stand	lardOD	FTools			
	O Defocus(1) functions	Defoc	usToo	ls		f¥New−CO¥BE)¥マトメ
	Make def	Clust	erTool	s		🔽 🔽 S	òtandai
		Invers	eTools	6		SmartLab-DSH2m	
	O Defocus(3) function	Meas	ureDat	atoASC	Tools		
	⊙ Defocus(2) function	Orien	tationD	isplayT	ools	SmartLab-D)SH2m
- AbsCa □ Defoc	Schulz reflection metho us file Select Defocus(1) functions Make defo Defocus(3) function	Fiber Stand Defoc Clust Invers Meas Orien	Tools lardOD cusToo erTool seTools ureDat tationD	FTools Is S atoASC iisplayTe	Tools	en 133.0 f¥New-CO¥BE v v s SmartLab-E SmartLab-E] }¥ ita)S

🌌 InverseTools 1.08X by CTR				
File Help				
Asc Profile(or Division)	ProfiletoDivisionProfile	DivisionProfile(index) Asc		
-Asc DivisionProfile(Index)	InverseAll	Inverse TXT File		
-TXT HKL Intens 2Theta TEXT data	MeasureDatatoMYICDD	MYICDD data		
InverseTXT Inverse Data	InverseDisplay	Inverse 3D Display		
InverseTXT Hexalnverse Data	InverseDisplayHexa	Hexalnverse 3D Display		
-Asc Profile	Lotgering Method	Text Data		
-Asc(files) Profiles	Lotgering and Inverse	Text Data		
-ODF-Inverse Inverse Data	InverseDirection	Direction-Plane Data disp		
-ODF-Inverse Inverse Data	GPInverseDisplay	Inverse 3D Display		
Inverselist Inverse Data	InverseCubicContourDisplay	InverseContour Display		

テキストファイルを選択

逆極点図の表示

等高線レベル部分をマウスクリックで表示条件の編集

🖌 ContourLevelChange	🖉 ContourLevelChange 🛛 🗙			
Contourlevel	Contourlevel			
Rawdatamax: 0.0	Rawdatamax : 0.0 Extra FixMaxIntens.			
Max: 7.36 Step: 1.0 Contour number: 7	Max: 7.36 Step: 1.0 Contour number: 7			
Change Start 0.0 Step 1.0 Change number: 7	Change Start 0.0 Step 0.5 Change number: 14			
The step doubling mode(1,2,4,8,16,)	The step doubling mode(1,2,4,8,16,)			
Draw Lineswidth(double)	Draw Lineswidth(double)			
Memo-	Memo			
OK Cancel	OK Cancel			

等高線間隔、等高線幅、コメント欄に ND を入力で、表示内容が変わります。

入力ファイルのファイル名変更しСоруする

GPInverseDisplay ソフトウエアで作成される入力データのファイル名は常に"Inverselist.TXT " であり、ND,TD,RD の区別が出来ないので、本ソフトウエアでファイル名を変更する。

🌺 Inverselist.TXT C	ору	X
Path C:\CTR\DA1	TA\InverseDisplay\CGCS20%5deg\LaboTex\CW	
Copy filenmae	Inverselist.TXT	
	Copy	

ファイル名を変更して Copy します。

Inverselist.TXT C	ору	×
Path C:\CTR\DA1	A\InverseDisplay/CGCS20%5deg\LaboTex\CW	
Copy filenmae	ND-Inverselist.TXT	
	Copy Cancel	

等高線数が多くなると自動的にFont調整されます。

表示ファイル名の編集

画面に表示されている表示方式の変更

Full path

Filename

Inverselist.TXT

Disable

C:¥CTR¥DATA¥InverseDisplay¥CGCS20%5deg¥LaboTex¥CW¥Inverselist.TXT File Help View 極極点角度と結晶方位[hkl]

逆極点図上をマウス移動でリアルタイムに (β 、 ϕ)、密度、方位[h k l]を表示

赤いマウスは表示されません。更にマウスクリックを行えば、固定が解除されます。

ANGLEDATA String の fontsize 変更

InverseCubicContourDisplay(Free) 1.05M by CTR

File Help View

Font size	>		
Filename disp	>		
AngleDataFilenameDispOFF			
AnglerDataStringFont size	>	10	
		11	
		12	
		13	
		14	
		15	
		16	

Fontsize=10

