ODF解析結果の比較支援ソフト

InverseDisp2ソフトウエア

Version $2.05\,\mathrm{S}$

逆極点図を36分割し、数値化された逆極点図リストから分轄 BOX に含まれる方位の加算を行い、 平均化することで逆極点図の数値化を行ってみました。

得られる値は、結晶方位の VolumeFraction ではありませんが、同一方位間の比較を行う事は 可能と思われます。

> 2018年10月31日 HelperTex Office

複数のODF解析結果を比較する場合、ODF解析結果の各方位の体積率が考えられるが、試料毎に 方位にずれがある場合、単純比較できない。そこで複数のODF解析結果に対し機械的に比較を行うための ソフトウエアを作成した。

比較する対象は逆極点図、逆極点図を36分割し、そのBOX内の平均強度とした。

こうする事で、試料面の方向の成分を比較できます。

また、逆極点図をプロファイルとして扱い、プロファイル比較ソフトウエアで扱えるようにした。

36分割は、ベクトル法で分割しているωi、ψijのpBoxを逆極点図に応用し、計算する。

長島先生の「ベクトル法による集合組織の3次元解析」のベクトル法の球面三角形36分轄と同じ であるが、逆極点図比較に用いる。

	i	j 0	ψ _{ij}							
ω			1	2	3	4	5	6	7	8
0 6.9266 12.0551 17.1708 22.3770 27.7252 33.2550 39.0021 45	0 1 2 3 4 5 6 7 8	000000000000000000000000000000000000000	45 26.3186 17.9551 13.3561 10.4606 8.4740 7.0316 5.9440	$\left\{ \begin{matrix} \Delta \omega_1 \\ 45 \\ 33,2204 \\ 25,6215 \\ 20,4414 \\ 16,7295 \\ 13,9649 \\ 11,8472 \end{matrix} \right\}$	$\begin{pmatrix} d_{402} \\ 45 \\ 36.1923 \\ 29.5995 \\ 24.5888 \\ 20.7140 \\ 17.6725 \end{pmatrix}$	$\begin{bmatrix} \Delta \omega_3 \\ 45 \\ 37.7830 \\ 31.9398 \\ 27.2154 \\ 23.3907 \end{bmatrix}$	Δω ₄ 45 38.7389 33.4323 28.9827	$\frac{d\omega_s}{45}$ 39.3551 34.4415	<i>d</i> ∞ ₈ 45 39.7734	<u>Δω</u> 7 45

上記球面三角形の直交座標系36分轄角度

逆極点図の回転方向は ϕ ij、煽り方向角度は、 ω i と ϕ ij から計算する。 ω i をWulff f ネット上の大円とTD軸の交わる角度として、逆極点図の ω s と ω e を計算 ω s、 ω e、 ϕ s、 ϕ e を BOX の頂点とすると

	ωs	ωe	ψ s	ψ e
1	0.0	9.51	0.0	45.0
2	6.93	13.27	0.0	26.32
3	7.67	16.2	26.32	45.0
4	12.06	17.9	0.0	17.96
5	12.6	19.87	17.96	33.22
6	14.09	22.61	33.22	45.0
7	17.17	22.87	0.0	13.36
8	17.57	24.26	13.36	25.62
9	18.71	26.35	25.62	36.19
10	20.45	28.92	36.19	45.0
11	22.38	28.08	0.0	10.46
12	22.68	29.09	10.46	20.44
13	23.55	30.69	20.44	29.6
14	24.94	32.76	29.6	37.78
15	26.75	35.2	37.78	45.0
16	27.73	33.26	0.0	8.47
17	27.95	34.02	8.47	16.73
18	28.63	35.25	16.73	24.59
19	29.73	36.9	24.59	31.94
20	31.22	38.91	31.94	38.74
21	33.05	41.25	38.74	45.0
22	33.0	39.2	0.0	7.03
23	33.18	39.79	7.03	13.96
24	33.71	40.75	13.96	20.71
25	34.58	42.08	20.71	27.22
26	35.78	43.74	27.22	33.43
27	37.3	45.73	33.43	39.36
28	39.12	48.02	39.36	45.0
29	39.0	45.15	0.0	5.94
30	39.14	45.62	5.94	11.85
31	39.57	46.38	11.85	17.67
32	40.27	47.45	17.67	23.39
33	41.25	48.82	23.39	28.98
34	42.51	50.49	28.98	34.44
35	44.05	52.45	34.44	39.77
36	45.88	54.74	39.77	45.0

以下に各 BOX の代表的な方位を計算してみます。

逆極点方位をLaboTexで計算を行い、
GPInverseDisplayで逆極点図をInverselist..txtに変換し
InverserCubicContourDisplayで逆極点図を表示、方位計算を行い36BOX化によるBOXを決定する。

方位毎に逆極点図の最大密度とBOX%が異なって計算されています。

BOX1 $(\beta=35.6, \phi=0.9)$ Z=27.3 --> [0,0,1]

BOX2 $(\beta=2.4, \phi=9.6)$ Z=9.9 --> [1,0,6]

BOX4 $(\beta=1.7, \phi=14.1)$ Z=9.51 --> [1,0,4]

BOX7 (β=0.4 , φ=18.4) Z=8.98 --> [1,0,3]

BOX10 (β =44.8 , ϕ =25.1) Z=9.23 --> [1,1,3]

 $(\beta=26.3, \phi=29.4)$ Z=4.5 --> [2,1,4] BOX13

BOX16 (β =0.6 , ϕ =30.7) Z=8.9 --> [3,0,5]

BOX17 $(\beta=9.9, \phi=30.2)$ Z=4.59 --> [6,1,10]

BOX19 (β =25.3, ϕ =33.6) Z=4.38 --> [6,3,10]

BOX21 $(\beta=44.8, \phi=40.1)$ Z=8.89 --> [3,3,5]

 $_{BOX22}$ (β =0.6 , ϕ =36.8) Z=8.3 --> [3,0,4]

BOX25 $(\beta=25.9, \phi=40.3)$ Z=4.48 --> [6,3,8]

BOX28 (β=44.9, φ=43.7) Z=8.31 --> [2,2,3]

BOX31 (β=14.1, φ=45.6) Z=8.58 --> [4,1,4]

BOX34 - (\$=30.9 , \$\$=49.0) Z=8.75 --> [5,3,5]

逆極点図を得る

ODF解析ソフトウエアではODF解析後、逆極点図のexportを可能にしている。 このexportされた逆極点図を読み込む Ver1.0はLaboTexの逆極点図

Ver1.1はStandardODFの逆極点図をサポートします。

の解析が可能になります。

InverseDispの機能

ステレオ三角表示上で最大強度位置表示

最大強度位置の反射指数(本来指数は整数であるが、実数表)

36分割の平均強度表示

36分割のプロファイル表示

逆極点図のテキストデータ出力(Cluster解析用)

立方晶のみ

LaboTexにおける逆極点図の出力

逆極点の100,110,111 に関して計算し、PF-exportにより作成される。

ſ	PF Export as Text file	X
ł	Job No :	Job01
	Sample :	0_Cubic
	Select Data to Export :	
	0_Cubic - CPF - 111 0_Cubic - CPF - 211 0_Cubic - CPF - 211 0_Cubic - CPF - 113 0_Cubic - NPF - 100 0_Cubic - NPF - 111 0_Cubic - NPF - 113 0_Cubic - RPF - 113 0_Cubic - RPF - 111 0_Cubic - RPF - 211 0_Cubic - RPF - 113 0_Cubic - RPF - 113 0_Cubic - RPF - 113 0_Cubic - INV - 100 0_Cubic - INV - 010 0_Cubic - INV - 001	
	ОК	Cancel

StandardODFにおける逆極点

標準の設定でODF解析と共に逆極点図は計算され、StandardODFがインストールされている ディレクトリにテキスト出力されています。

StandardODFがCドライブにインストールされていれば

C:¥ODF¥OUTPUT2、あるいはC:¥ODF¥ODF1

InverseDisp2

左が逆極点図表示画面、右が36分割表示画面

Fileでデータをloadすると以下の図が表示される。

図では、表示角度が(55.0,45.0)が最大強度で、指数変換すると、[101]と表示 その時の強度が 15.9 である。

File Help

Max Intensity : 15.9			
Max angle:	55	.0	45.0
hkl : [1	1	1]

極点測定が5度ステップで行われた場合、逆極点図も5度ステップで作成されている。 右の図表では、逆極点図を36分割し、その範囲の平均値が表示されている。 又、最大強度位置に赤丸が表示される。

ND, TD, RDの表示

	ND	© TD	© RD
치	ドタン選択で切り替わ	5.	
ç	36BOXとProf	i l e 切り替え	

36BOX

Profile

切り替え後のND, TD, RD選択で切り替わる

図では、[111]がピーク状に表れています。

Vector法の36BOX表示

Vector法評価のために、36BOXを標示する

ベクトル法では、等間隔データは計算されていないので、ステレオ三角形は表示されません。

ODF 解析すると、逆極点図は、0 -> 90 g (StandardODFは異なります)の格子状デー タとして得られます。

この格子状データと0->45度(立方晶)データとして取り出します。

このデータを他のソフト(Cluster)で読み込める形式で出力します。(GeneralFormat)

File	Help	
Da	ata File)
Sa	ve FullProfile	
Sa	ave 36BOXProfile	
Ex	it	

FullProfileは、逆極点図(0->45,0->45)のデータをプロファイル形式
36BOXProfileは逆極点図を36BOXの平均値としてプロファイル形式

👙 File Meker
File meker Path Image: C:\Temp File name 36BOXProfile
make cancel

ファイル名は、36BOXProfile-36INV. txtとして作成

7	ァイル(<u>E</u>)	編集
1	0.869	
2	0.977	
3	0.985	
4	0.858	
5	0.893	
0 7	1.047	
1	0.32	
31	0.885	
32	0.735	
33	0.68	
34	0.68	
35	0.705	
36	0.773	

HKLPeofile の追加

逆極点図の外周部分を表示

ソフトウエアに関しては、

<u>http://helertex.sakura.ne.jp/Soft/Soft-index.html</u> たままにレディビネロ

を参考にしてください。