六方晶の逆極点図を表示する

InverseDisplayHexaソフトウエア

Ver1.16Y

ODF 解析後の逆極点図表示では、ODF ソフトウエアによって表示方法が異なる。

本ソフトウエアでは、LaboTexで表示する逆極点図を、一般的な表示方法に変換し 更に、各種ODFの逆極点図を表示する事を目的とする。

LaboTexでは面表示、TexToolsでは方位表示[]が行われている。 LaboTexの六方晶逆極点図

上記Mainエリアに2つの逆極点図が存在し、2つの逆極点図が異なる事があるため、 2つの逆極点図の表示や平均化した逆極極点図を3指数、4指数で表示を行う。

本プログラムによる表示

[0001]-[10-10]-[11-20] [0001]-[[10-10]-[2-1-10] [001]-[210]-[110] [001]-[210]-[100] 平均値による表示もサポート


```
    (h k l) -> (φ、β),
    φ角度は(001)と(h k l)の面角度から計算
```

β角度は

a s i n ((2*h+k) / (2*sqrt (h*h+h*k+k*k)) あるいは、[100]と[hk0]の方位角度から計算

*注意

測定間隔により、本来の{hkl}あるいは[uvw]が求められないケースがあります。 Ver1.04 以降は、φ方向、β方向に放物線近似を行いピーク角度を計算

各方位の確認は、soft¥DocのHexagonalInverse で確認してください。

C:¥CTR¥bin¥InverseDisplayHexa.jar をダブルクリック ODFPOleFigure2->ToolKit->InverseTools->InverseDisplayHexa をクリック

📥 O DF	PoleFigure2 3.2	0YT[14/	10/31	ы бу СТР	ł
File L	.inear(absolute)	ToolKit	Help	InitSet	BGMo
Files s ASC(F	elect RINT-PC)	PFtoC	DF3		
	e o re	SoftW	'are		
Pre	vious Next	Image	Tools		
Backe	zroud delete mode	PopLA	ATools		
	🔿 Double 🔿 Sine	ODFA	fterTo	ols	
Peak s	slit 7.0 mm BG S	PoleC	rienta	tionTool	S
-AbsC-	alc	DataE	laseTo	ols	
	Schulz reflection m	Fiber	Tools		
Defoc	us file Select	Stand	ardOD	FTools	
	🔘 Defocus functio	Defoc	usToo	ls	
	Make	Clust	erTool	S	
		Invers	eTools	6	
	O Defocus functio	Measu	ureDat	atoASC [*]	Tools
	O Defecue functio	Orient	tationE)isplayT(ools

🕌 InverseTools 1.03XT[14/10/31] by CTR

File Help

Asc Profile(or Division)	ProfiletoDivisionProfile	DivisionProfile(index) Asc
Asc DivisionProfile(Index)	InverseAll	Inverse TXT File
-TXT	MeasureDatatoMYICDD	MYICDD data
-InverseTXT	InverseDisplay	Inverse 3D Display
-InverseTXT- Hexalnverse Data	InverseDisplayHexa	Hexalnverse 3D Display

説明	に使	5	テ	ス	トデータ
即しつ」	(LIX)	/	~	

{0001}<10-10>	{001}<210>	20%
{01-10}<2-1-10>	{010}<100>	20%
{-12-10}<0001>	{-120}<001>	20%
{01-13}<2-1-10>	{013}<100>	20%
{01-14}<0-221>	{014}<-2-41>	20%

4指数<->3指数変換はHexaConvet ソフトウエアアを用いる

🛃 HexaConvert 1.02YT[14/10/31] by CTR
File Help
A □ X-Axis[100] ([2-1-10])
MIller Notation (3Axis Notation)
Miller Bravais Notation(4 Axis Notation) Image: Comparison of the second seco
Eular Angle(fai1,FAI,fai2) 90.0 24.614 30.0
r Material select
Titanium.TXT
c/a 1.587 fai2 0 🗸 Calc
DISP
Position 10 Image: Disp size 200 BG Corr Black Line size 1.0

テストデータの逆極点図はLaboTexを用いる。LaboTexで上記結晶方位を登録

ModellingでODF図を作成

逆極点図を作成し、Exportを行う。

必要なソフトウエア

InverseDisplayHexaソフトウエア InverseDisplayHexaXYソフトウエア(逆極点図表示部)

LaboTexによる結晶方位作成

作成したODF図

計算された逆極点図

赤線の上下に2つの逆極点図が存在している。この2つの部分の表示、平均値での表示を行う。

逆極点図のExport

F i l e -> P F E x p o r t

Inverse のExportする。

PF Export as Text fi	ile 🛛 🔀
Job No :	Job01
Sample :	Ti
Select Data to Export :	
Ti - APF - 100 Ti - APF - 002 Ti - APF - 101 Ti - INV - 001 Ti - INV - 010 Ti - INV - 100	
OK	Cancel

InverseDisplayHexaプログラムによる表示 LaboTexで計算し、Exportした逆極点図を選択

🌃 InverseDisplayHexa 1.15YT[16/06/30] by CTR	
File Help PlaneDisp{hkl}	
ODF LaboTex popLA TexTools InverseAll Other	
Material Material Data Titanium.txt	c/a= 1.5871
-Inverse data select	ND
LaboTex condition set	
Average-[0001]-[10-10]-[11-20] Maxindex 15	
_Inverse	
Max level 31.06 2D 💙 3D Max-value((max 1.0) 0.3	Data Disp List Disp
Window Width 800 Disp Intens. Level 1	[hkl] Intens. Inverse Disp

ND,TD,RD,Max が表示される。

表示方法を選択

測定間隔5度では、予測と異なる結果になります。

ND 方向 Plane{hkl} と Directio	on[uvw] の比	較		
{-1 2 0}< 0 0 1>				
Plane {15 8 - 23 0} 90.0	50.0	5.34	90.0	20.0
Direction [13 7 -20 0] 90.0 検出された位置から計算	50.0	5.34	90.0	20.0

(90.0,50.0)から {158-230} が計算され (210)から (90.0,49.11) が計算される。

M InverseDirection 1.10 by CTR	🔏 InverseDirection 1.10 by CTR
File Help	File Help
Max index 15 Method Plane \checkmark Material Titanium.txt φ 90 β 50 Calc 90.0 50.0> (15 8 0)> (15 8 -23 0) Plane h 15 k 8 I 0 Calc h 15 k 8 t -23 I 0 Calc Direction Max index 15 90.0 50.0> [11 9 0] 90.0 50.0> [13 7 -20 0]	Max index 14 Method Plane \checkmark Material Titanium.bt ϕ 90.0 β 49.11 Calc 90.0 49.11> (2 1 0)> (2 1 -3 0) Plane h 2 k 1 l 0 Calc h 2 k 1 t -3 l 0 Calc Direction Max index 15 90.0 49.11> [5 4 0] 90.0 49.11> [2 1 -3 0]

{102}<0.10>

Plane	{10-12}	42.5	30.0	6.91	42.5	0.0
Direction	[5 0 -5 6]	42.5	30.0	6.91	42.5	0.0

検出された位置から計算

(42.5,30.0)から{10-12}が計算され {102}から(42.5,30.0)が計算される。

File HelpFile HelpMax index15MethodPlaneMaterialTitanium.txt ϕ 42.5 42.5 30Calc ϕ 42.5 30.0 42.5 30.0 42.5 30.0 42.5 30.0 42.5 30.0 42.5 30.0 42.5 30.0	
Max index15Max index15MethodPlane \checkmark MethodPlaneMaterialTitanium.txtMaterialTitanium.txt ϕ 42.5 β 30Calc42.530.0> (102)> (102)> (102)42.5 β Plane ϕ ϕ ϕ	
h 1 k 0 1 2 Calc h 1 k 0 t -1 2 Calc Direction Max index 15 42.5 30.0 > [10 5 6] 42 5 30.0 > [5 0 42 42	Calc -1 2) Calc I 2 Calc 5 30.0> [10 5 6]

-							_
1	1	1	3}c	1	-1	0>	-
1.							_

Plane	{1 1 -2 3}	46.93		
Direction	[4 4 -8 7]	46.93		
検出された位置から計算				

60.0	7.03	46.93	30.0
60.0	7.03	46.93	30.0

(46.93,60.0)から{11-23}が計算され {113}から(46.62,60.0)が計算される。

{001}<100>

Plane	{0 0 0 1}	0.0	30.0	31.06	0.0	0.0
Direction	[0 0 0 1]	0.0	30.0	31.06	0.0	0.0
検出された位置から計算						

(0.0,30.0)から{0001}が計算され、(001)から(0.0,30.0)が計算される。

🖁 InverseDirection 1.10 by CTR 📃 🗖 🗙	🖉 InverseDirection 1.10 by CTR 📃 🗖 🔀
File Help	File Help
$\begin{array}{c ccccc} Max index & 15 \\ \hline Method & Plane & \checkmark \\ \hline Material & Titanium.txt \\ \hline \phi & 0 & \beta & 30 & Calc \\ \hline 0.0 & 30.0 &> & (0 & 0 & 1 & 1 & calc \\ \hline n & 0 & k & 0 & 1 & 1 & calc \\ \hline n & 0 & k & 0 & t & 0 & 1 & calc \\ \hline Direction & \\ Max index & 15 & 0.0 & 30.0 &> & [0 & 0 & 1] \\ \hline 0.0 & 30.0 &> & [0 & 0 & 1] \\ \hline \end{array}$	$\begin{array}{c ccccc} Max index & 15 \\ Method & Plane & \\ \hline Material & Titanium.bt \\ \hline \phi & 0.0 & \beta & 30.0 & Calc \\ \hline 0.0 & 30.0 &> (0 & 0 & 1) & \\ \hline 0.0 & 30.0 &> (0 & 0 & 1) & \\ \hline Plane & & & \\ h & 0 & k & 0 & 1 & 1 & Calc \\ \hline h & 0 & k & 0 & t & 0 & 1 & 1 & Calc \\ \hline h & 0 & k & 0 & t & 0 & 1 & 1 & Calc \\ \hline \hline Direction & & & \\ Max index & 15 & 0.0 & 30.0 &> [0 & 0 & 1] \\ \hline 0.0 & 30.0 &> [0 & 0 & 1] & \\ \hline \end{array}$

{	3	1	4}<	1	1.1>	-

Plane	{11 4 -15 15} 58.33
Direction	[19 7 -26 15] 58.33

45.0	2.98	58.33	15.0
45.0	2.98	58.33	15.0

{314}から計算される (φ、β)

検出された位置から計算

RD 方向の確認

InverseAllデータ

