各種ODF対応の汎用ODFDisplay

ODFDisplay2

Ver.1.46Y

odftex@ybb.ne.jp

ご質問は気楽にご連絡ください。

修正履歴

*	Ver.1.100	2009-12-05	popLAのODFサポート
*	Ver.1.101	2009-12-19	GV
*	Ver.1.102	2010-12-14	*.COD 追加 千葉先生ご指摘で
*	Ver.1.103	2011-01-05	popLA Bunge 表示に phi2 断面表示追加
*	Ver.1.104	2011-01-07	popLA Roe->Bunge
*	Ver.1.105	2011-01-08	popLA Roe<->RINT Roe
*	Ver.1.106	2011-01-08	Bunge PHI
*	Ver.1.107	2011-01-11	popLA COD Bunge phi2 として処理確認
*	Ver.1.108	2011-01-13	ContourLevel
*	Ver.1.109	2011-01-16	StandardODF ODF15 の表示
*	Ver.1.110	2011-01-16	TexTools
*	Ver.1.111	2011-01-20	ODF[][][<0 は ODF[][][=0.0 とした。
*			StandardODF は StdODFDir()から取得
*			ODF Min を表示、
*	Ver.1.112	2011-01-22	Hexagonal 制限 phi2のみ
*	Ver.1.113	2011-01-22	repaint()
*	Ver.1.113	2011-01-23	SingleDisplay(phi2)LaboTex,StandardODF,popLA,TexTools
*	Ver.1.114	2011-01-24	phi21画面表示で等高線が表示出来ない事がある。
*	Ver.1.115	2011-02-01	Euler変換見直し
*	Ver.1.116	2011-02-03	非対称対応、ただし90x90x90を表示 poplaは lib にて
*	Ver.1.117	2011-02-25	操作性から StandaradODF を c:¥と sampleDir に分けた
*	Ver.1.118	2011-03-11	StandardODF の c:ODF 選択不良の修正
*	Ver.1.119	2011-04-10	ODF Max 少数点以下2桁表示
*	Ver.1.120	2011-04-10	StandardODF Bunge 表示から NewCubicCODisp を呼び出す
*	Ver.1.121	2011-04-10	LaboTex Bunge 表示から NewCubicCODisp を呼び出す
*	Ver.1.122	2011-04-13	ODF 表示画面から NewCubicCODisp を呼び出すプロセス管理
*	Ver.1.123	2011-06-04	ODF3 面表示に対応
*	Ver.1.124	2011-06-13	Fiber 解析追加
*	Ver.1.125	2011-06-13	Fiber解析をoptionとする。
*	Ver.1.126	2011-06-15	popLA で φ 1=90 データ読み込んでいなかった。
*	Ver.1.127	2011-07-09	cubeSmoothing 追加,等高線画面に SMcycle=n を表示
*	Ver.1.128	2011-07-10	cubeSmoothing 追加,等高線画面に中心に重みを採用
*	Ver.1.129	2011-08-05	ReoBunge 変更で popLA のhexagonal修正
*	Ver.1.130	2011-09-30	stdlib.ODFCubeSmooth p2 面の平滑化に修正
*	Ver.1.131	2012-02-07	laboTex,TexTools 非対称をサポート
*	Ver.1.132	2012-02-10	popLA 非対称をサポート(popLA はすべて Bunge に限定する)
*	Ver.1.20Y	2012/03/18	SM の Max 強度を表示
*	Ver.1.21Y	2012/04/20	Bunge 追加
*	Ver.1.22Y	2012/05/17	常に FANGLE=true で NewCubicDisp が StandardODF 限定解除
*	Ver.1.23Y	2013/02/19	マウスクリックによる結晶方位決定と OrientationDisplay の起動
*	Ver.1.24Y	2013/02/21	φ1<=90 に関して最大指数を50とし、最大指数越えは、TABLE参照

*	Ver.1.25Y	2013/02/22	φ 1 の制限を外す。ODFDisp 画面条件を保存
*	Ver.1.26Y	2013/02/26	ODF 計算を追加
*	Ver.1.27Y	2013/02/27	ODF の sort,ODFDisplay2 に改名
		2013/03/05	ODF のレベル 1.20->1.50
		2013/03/06	ODFList 計算は"all"のみに制限
*	Ver.1.28Y	2013/04/01	ODF の全面表示の表示サイズを固定
*	Ver.1.29Y	2013/04/04	結晶方位計算をCubicに限定
*	Ver.1.30Y	2013/09/04	COmpareODF のための外部ファイル動作追加
			ODFFrame にファイル名表示
*	Ver.1.31Y	2014/04/19	LaboTex3.0.31 に対応
*	Ver.1.32Y	2014/04/29	{114} -1-72}追加,ODFFramePalette0にて List 方位の
			EulerAngle 近傍チェック(0.9)
*	Ver.1.33Y	2014/05/04	{4 4 11}<11 11 -8> Taylor 追加と INDEXMAX を細かくした
*	Ver.1.33Y	2014/05/05	β -fiber 修正(±5 d e gとした)
*	Ver.1.35Y	2014/05/08	database number=24 bug edit
*	Ver.1.36Y	2014/05/15	HKLUVWlist 選択を追加
*	Ver.1.37Y	2014/06/17	マイナスODFをそのままとした ODFFramePalette()
*	Ver.1.38Y	2014/07/02	LaboTex のEuler角度Fullに対応 f1360 F2360 F180
*			表示のみ、ODF方位密度や[hkl} <uvw>表示は対応しない。</uvw>
*			
*		2014/07/06	Step 表示,等高線レベル小数点以下3桁に修正(step=0.125 対策
*	Ver1.39Y	2015/04/05	{100}<0-20>> {100}<0-21>
*	Ver1.40Y	2016/02/11	CTRODF よりダイレクト起動
*	Ver1.41Y	2016/06/27	±5度のβ-Fiber にφ2方向のずれも追加
*	Ver1.42Y	2016/11/18	CTRODF から直接起動の場合、List表示不良修正
*	Ver1.43Y	2016/12/20	β -fiber の copper,S,brass の結晶方位密度計算
*	Ver1.44Y	2016/12/22	結晶方位密度 List に周辺±5度範囲を追加
*	Ver1.45	2016/12/27	SearchList MAXODF,MINIODF 追加、dataBase notselect 追加
*	Ver1.46	2017/10/12	-LABOTEX で画面が2つ起動修正

- 1. 概要
- 2. 各種ODFテキストデータフォーマット
 - 2.1 StandardODF
 - 2.2 TexTools
 - 2.3 LaboTex
 - 2.4 popLA
 - 2.5 Bunge
 - 2.6 NEWODF
- 3. データ処理の流れ
- 4. プログラムの使い方
 - 4.1 プログラムの起動
 - 4.1.1 直接起動
 - 4. 2. 2 ODFPoleFigure2のToolKit->ODFAfter->ODFDisplayで起動
 - 4. 3. 3 ODFPoleFigure2のToolKit->popLATools->ODFDisplayで起動
 - 4.2 機能配置
 - 4. 3 メニュー
 - 4. 3. 1 Fileメニュー
 - 4. 3. 2 RoeModeEnableメニュー
 - 4. 3. 3 Helpメニュー
 - 4. 3. 4 3dispODFメニュー
 - 4. 3. 5 OtherODFメニュー
 - 4.3.6 結晶系選択メニュー
 - 4. 4 StandardODF解析のodf15を読み込む
 - 4.4.1 Fiberメニュー
 - 1) BCC-Fiber
 - 2) FCC-Fiber
 - 4. 4. 2 CubicCODisp メニュー
 - 4. 4. 3 OrientationDisplay X=--
 - 4. 4. 4 ODFメニュー
 - 4. 4. 5 ODF3面表示
 - 4.4.6 ODF1面表示
 - 4. 4. 7 ODFデータの平滑化
- 5. 内臓データベース
 - 5.1 検索データベースの指定
- 6. 外部からODF図を表示

1. 概要

本ソフトウエアは、各種ODFで解析された三次元結晶方位分布関数(ODF)のテキストデータを元に、 統一したODF図を表示し、解析する事を目的に作成されています。

立方晶に限れば、Fiber解析、結晶方位図、方位密度Listの計算表示を行います。

対応ODFは、StandardODF, TexTools, LaboTex, popLA, Bungeを サポートしています。ほかのODFでも、ODFがテキストで出力されていれば、簡単に組み込み可能です。

- 2. 各種ODFテキストデータフォーマット
 - 2.1 StandardODF

S t n a d a r d OD F は、OD F データを自動的に ODF15 として、バイナリーデータを出力します。 本ソフトウエアで読み込み時、テキストデータに変換します。 C:¥ODF¥ODF15 -> ODF15.TXT テキストデータに変換後の ODF15.TXT データ

ODF1	5 - メモ帷	l	
ファイル	∕(F) 編集	(E) 書式(O)	表示(V) ヘルプ(H)
PHI2	PHI	PHI1	ODF
0.0	0.0	0.0	5.467391490936279
0.0	0.0	5.0	4.544561386108398
0.0	0.0	10.0	2.571016550064087
0.0	0.0	15.0	0.9745814204216003
0.0	0.0	20.0	0.3241477906703949
0.0	0.0	25.0	0.20578402280807495
0.0	0.0	30.0	0.12853588163852692
0.0	0.0	35.0	7.175653008744121E-4
0.0	0.0	40.0	-0.09090166538953781
0.0	0.0	45.0	-0.11830008774995804
0.0	0.0	50.0	-0.09090134501457214
0.0	0.0	55.0	7.175889913924038E-4
0.0	Q.Q	<u>60</u> .0	0.12853579223155975

2.2 TexTools

TexToolsは、ODF計算時ODF結果を出力するファイルを指定します。

テキスト形式で出力されます。

Text Fo	rmat of 19	ODF File 19↓	(Arbitr	ary Resc	lution)	Ŷ			
0↓ 1.00 3↓	1.00	1.00	90.00	90.00	90.00↓				
Ĭ:¥2011 I:¥2011 I:¥2011	-01-05-p -01-05-p -01-05-p	opLA-bc1 opLA-bc1 opLA-bc1	O¥textoo O¥textoo O¥textoo	ls111_0. ls200_1. ls220_2.	pol↓ pol↓ pol↓				
2 2 1↓	0 2	0 0	\downarrow						
5.00↓ 1↓ 0↓									
2↓ 15 0.0100	15↓ 0.0259↓	,							
0.6152 1.0203 0.6749 0.8592 0.7382 0.6608 0.8148 0.6933 0.9179 0.6395	0.6034 0.9914 0.6644 0.8482 0.7876 0.6916 0.8934 0.7255 0.8830 0.6410	0.6322 0.8792 0.6910 0.8297 0.8280 0.7104 0.9926 0.7521 0.8769 0.6568	0.7509 0.7809 0.7540 0.8061 0.8237 0.7618 0.9958 0.7470 0.8815 0.7859	$\begin{array}{c} 0.7943\\ 0.7943\\ 0.7800\\ 0.7678\\ 0.8263\\ 0.7697\\ 0.9460\\ 0.7483\\ 0.8074\\ 0.7556\end{array}$	0.7809 0.7509 0.8460 0.7136 0.9145 0.6897 0.9086 0.6921 0.7996 0.7278	0.8792 0.6322 0.9343 0.6615 0.9534 0.7165 0.8556 0.7497 0.9164 0.7183	0.9914 0.6034 0.9710 0.6820 0.9144 0.7826 0.8169 0.8326 1.0193 0.7078	1.0203 0.6152 0.9787 0.7059 0.9128 0.7765 0.8547 0.8314 0.9661 0.6943	0.9870 0.9013 0.7682 0.7560 0.7511

2.3 LaboTex

LaboTexでは、ODF計算後、ODFのExportでテキストファイルが作成される。

PHI1	PHI2	PHI	ODF
0.00	0.00	0.00	0.199999E+00
5.00	0.00	0.00	0.199999E+00
10.00	0.00	0.00	0.199999E+00
15.00	0.00	0.00	0.199999E+00
20.00	0.00	0.00	0.199999E+00
25.00	0.00	0.00	0.199999E+00
30.00	0.00	0.00	0.199999E+00
35.00	0.00	0.00	0.199999E+00
40.00	0.00	0.00	0.199999E+00
45.00	0.00	0.00	0.199999E+00
50.00	0.00	0.00	0.199999E+00
55.00	0.00	0.00	0.199999E+00
60.00	0.00	0.00	0.199999E+00
65.00	0.00	0.00	0.199999E+00
70.00	0.00	0.00	0.199999E+00
75.00	0.00	0.00	0.199999E+00
80.00	0.00	0.00	0.199999E+00
85.00	0.00	0.00	0.199999E+00
90.00	0.00	0.00	0.199999E+00
0.00	5.00	0.00	0.199999E+00
5.00	5.00	0.00	0.199999E+00
10.00	5.00	0.00	0.199999E+00
15.00	5.00	0.00	0.199999E+00
20.00	5.00	0.00	0.199999E+00

2.4 popLA

popLAでは、ODF計算で、自動的にテキストファイルが出力される。

bc90	111	5.0d	leg-r	rp2.1	rxt 2	2 001	cor	npute	ed by	/ har	mon	ics	6-J/	<u>-**</u>	4			
SHDB	5.0	J 90.	0 5	5.0 9	90.0	11	2-1	3 1	100	k	bhi1=	= 0	.0↓					
14	11	21	63	106	108	- 78	68	94	112	94	68	- 78	108	106	63	- 21	11	14↓
33	28	35	74	122	130	96	- 71	78	89	78	- 71	96	130	122	74	35	28	331
73	65	61	88	132	147	115	70	45	40	45	- 70	115	147	132	88	61	65	73↓
112	102	87	86	98	107	98	67	26	6	26	67	- 98	107	98	86	87	102	112↓
138	128	107	81	50	45	- 74	85	42	10	42	85	- 74	45	50	81	107	128	138↓
117	112	101	-73	-23	11	- 73	121	81	41	81	121	- 73	11	23	-73	101	112	117↓
53	58	68	55	11	- 7	86	152	123	85	123	152	86	- 7	11	55	68	58	53↓
35	45	58	44	10	19	95	157	145	120	145	157	95	19	10	44	58	45	35↓
107	105	87	52	29	47	90	114	110	102	110	114	90	47	29	-52	- 87	105	107↓
162	142	94	61	76	101	82	43	- 32	- 38	- 32	43	- 82	101	76	61	94	142	162↓
110	84	43	56	133	168	95	7	_1	-23	_1	7	95	168	133	56	- 43	84	1101
36	16	1	43	153	196	115	31	51	88	51	31	115	196	153	43	1	16	36↓
51	33	11	41	122	160	111	63	94	128	94	63	111	160	122	41	<u>11</u>	33	.51↓

2.5 Bunge

UNE.EOD - 义モ帳					
ファイル(F) 編集(E) 書式(O) 表示(V)	ハルプ(H)				
psroll10.asc COMMENT:BLANK					
LMAX 23LFMAX 191DM 1DN 1 0.0360.0 5.0 0.0 90.0 5.0	IDI 4 1) 5	1 1 5.0 19	PHI2		
435 452 413 384 469 583 530 605 691 781 867 756 413 384 469 583 574 478	3 574 478 43 3 425 180 16 3 436 470 5	436 470 511 9 161 268 548 9 511 569 717 9	569 717 884 887 978 1177 946 601 884 887 744 646 046 601 427 414	744 646 610 549 437 414 435 452 610 549 530 605) 2 5
031 761 607 750 425 180 278 260 252 221 274 379 338 444 566 695 792 708 375 354 451 598 655 616	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	321 338 363 99 262 564 1 372 368 569	456 595 690 734 838 864 634 394 888 971 695 424	745 669 492 341 296 301 357 402 427 518 521 522	1 2 2
74 23 83 563 480 326 205 74 23 83 166 200 211 78 213 344 434 547 578 149 120 220 385 456 451 257 346 265 178 179 184) 151 144 3 255 303 28 } 399 162 10 400 230 ! 4 93 25 10	346 790 1076 3 282 219 198 2 104 236 421 5 56 136 457 1 162 462 696	940 656 492 377 237 323 446 548 516 415 206 107 740 777 570 307 730 616 439 239	278 550 442 258 92 140 159 155 172 229 341 419 384	2 2 4
24 161 240 319 181 18 24 161 240 319 487 544 35 66 139 194 157 109 244 204 196 133 85 116	5 159 202 14 4 400 256 20 9 98 16 - 5 140 127 1!	149 98 129 202 188 226 2 -79 67 381 4 153 242 365 4	193 279 347 304 255 143 -5 1 492 385 350 366 484 510 393 194	228 222 162 24 86 77 21 15 273 205 277 315 6	4 5 5

2.6 NEWODF

;f1 F f2 \	/alue↓
	0 00 22 011201
	5 00 21 02114
10.00 0.00	10.00 5.77750

F i b e r 表示

MultiDisp Ver1.107 4.0 4.

結晶方位密度List表示

S TextDisplay 1.11S C:¥CTR¥work¥ODFDisplay¥ODF.txt							
File Help							
Orientation	φ1	Φ	φ2	ODF			
{0 0 1}<1 0 0> cube	0.0	0.0	0.0	5.47			
{1 3 2}<6 -4 3> S	27.03	57.69	18.43	5.34			
{1 1 0}<0 0 1> goss	90.0	90.0	45.0	4.38			
{0 1 3}<1 0 0>	0.0	18.43	0.0	3.77			
{1 1 2}<-1 -1 1> copper	90.0	35.26	45.0	3.12			
{1 1 0}<1 -1 2> brass	54.9	90.0	45.0	2.93			
{2 1 3}<-1 -4 2> R	46.91	36.7	63.43	2.82			
{1 1 0}<1 -1 1> P	35.26	90.0	45.0	1.93			

結晶方位図

結晶方位図は、Cubic以外は使わないで下さい。 格子定数情報入力画面がありませんので、全てCubicとして 計算されています。

- 4. プログラムの使い方
 - 4.1 起動

4.1.1 直接起動

▶ コンピューター ▶	Windows-7-64-D0 (C:) > CTF	t ▶ bin	
ライブラリに追加 🔻	共有 マ 書き込む 新しい	ハフォルダー	
入り ンロード フトップ 長天した場所	▲ 名前 ■ ODF15toTXT ■ ODFDisplay ■ ODFDisplay2	更新日時 2012/03/23 8 2013/03/03 2013/03/03	種類 8:26 Executable Jar File 7:52 Executable Jar File 7:51 Executable Jar File

プログラムの実態は、C:\CTR\bin\ODFDisplay2.jar、マウスでダブルクリックで起動

4. 1. 2 ODFPoleFigure2 ソフトウエアの ToolKit->ODFAfter->ODFDisplay で起動

🛓 ODFPoleFig	ure2 3.07YT[13/12/12] by (CTR	
File Linear	FoolKit Help InitSet BGM	ode Defocus Con	
Files select - ASC(RINT-P	PFtoODF3		
Calcration Co	SoftWare		
Previous	ImageTools		
Backgroud d	PopLATools	HighM. @	
Park alls 70	ODFAfterTools	it / BGSlit	
Peak slit	PoleOrientationTools		
٩	ODFAfterTools 1.03X by CTR		
File	e Help		
	.aboTex,TexTools,STD,popLA DDFExport file	ValueODF	in-out-Polefigure compare
	.aboTex(POD) /olumeFraction file	ODFVFGraph	Circle graph disp
	.aboTex(POD) /olume Fraction files	CompareVolumeFraction	Circles graph disp
	.aboTex,TexTools,STD,popLA DFExportFile	ODFDisplay	Contour & fcc bcc fiber disp
	DFFiber TXT DDFDisplay export files	FiberMultiDisplay	ODF fiber files dsiplay
	.aboTex ODF export file	ODFEulerAngle	ODF maxF EulerAngle (hkl)[uvw]
E	ReCalc PoleFigure File	MakePoleFile	TXT2,TXT,ASC
P	rxT2 oleFigure-3D-Display	GPPoleDisplay	3D-PoleFigure-Display

4. 1. 3 ODFPoleFigure2 ソフトウエアの ToolKit->popLATools->ODFDisplay で起動

DDFPoleFigure2 3.07YT[13/12/12] by CTR						
File Linear Too	olKit Help InitSet B	GMode Defocus Con				
Files select - ASC(RINT-P	PFtoODF3					
Calcration Co	SoftWare					
Previous	ImageTools					
Backgroud d	PopLATools) HighM. 🧕				
	ODFAfterTools					
Peak slit 7.0	PoleOrientationToc	it / BGSlit				

sopLATools 1.02X by CTR		
File Help		
Create RAW File for popLA TXT2 Format Datas(N)	PFtoODF2POPLA	RAW File , DFB File
Display PF ODF of popLA PoleFigue ODF File	popLADatatoTXT2	Display
Display ODF of popLA SHD, CHD, SOD, COS file	ODFDisplay	Display
ReCalc Polefigure File	MakePoleFile	TXT2,TXT,ASC

$\mathsf{ODFD} \ i \ s \ p \ l \ a \ y \ 2$

ODFDisplay2 1.29YT[13/12/12] by CTR	
File RoeModeEnable Help 3dispODF OtherODF Cubic	
ODF	Bunge
ODFTXTFile(or ODF15)	
Contour(Max=40)	
ODFMax= DispMax 10.0 Steplevel 1 Number=	
Sample Symmetry(\$\phi 1)	
	-
⊂ Display	
Bunge Roe	
Phi1 Phi2 PHI Phi1 ORINT all	v
Smoothing Cycle 1 Center points 9 Display	

4.2 機能配置

入力ファイル選択

ODPDisplay2 1.29YT[13/12/12] by CTR
File RoeModeEnable Help 3dispODF OtherODF Cubic
ODF
ODFTXTFile(or ODF15)
Contour(Max=40) ODFMax= DispMax 10.0 Steplevel 1 Number=
Sample Symmetry(\$\phi 1)
Display Bunge Phi1 I Phi2 PHI Phi1 I RINT
Smoothing Cycle 1 Center points 9 Display
Bunge, Roe切り替えと表示断面指定
等高線数と間隔指定 ODF ① DF ① DF ① DF ① DF ① DF
テータの平消化 ノ ロトト回の書子
4.3 メニュー
4. 3. 1 Fileメニュー
File RoeModeEnable Help

Exitでプログラムを終了する。

4. 3. 2 RoeModeEnableメニュー

File Ro	eModeEn	able Help 3			
_°	True	popLA		Roe	
 0	False	_DF 15)	False->	Phi1	RINT

RoeモードをRINTモードに固定(popLAに変更出来ない)

4. 3. 3 Helpメニュー

File RoeModeEnable	Help 3dispODF C
_ ODF	Version
📃 LaboTex 📃 pop	LA 📃 StdODF 📄
システムのバージョンを	を表示する。

4. 3. 4 3 d i s p O D F × = - -

File RoeModeEnable Help	3dispODF OtherODF
ODF LaboTex popLA (Angle change

ODF図3面表示のφ2断面を指定

<u>*</u>	
0 ▼ 30 ▼ 45 ▼	
Set	

4. 3. 5 OtherODF $\neq = = =$

M ODFDisplay2 1.32YT[14/10/31] by CTF	2	
File RoeModeEnable Help 3dispODF	OtherODF Cubic	
_ODF	Bunge	
I aboTey Dopl A StdODE		🔲 Bunge
	NEWODF	. Dunge

標準ODFより増えた場合、追加する領域で、現在Bunge、NEWODF法が登録されている。

4.3.6 結晶系選択メニュー

File RoeModeEnable Help 3dispODF OtherODF	Cubic	
ODF	Crystal I	Cubic
LaboTex popLA StdODF TexTools	☑ StdODF(c:¥O	Tetragonal
ODFTXTFile(or ODF15)		Orthrorhombic
Contour(Max=40)		Trigonal
ODFMax= DispMax 10.0 Steplevel	1 Numb	Hexagonal
Sample Symmetry(\$\phi 1)		Monoclinic
		Triclinic

	結晶	系	を	選扔	<u>-</u>	す	る	0
--	----	---	---	----	----------	---	---	---

4. 4 StandardODF解析のodf15を読み込む

StdODF(c:¥ODF¥odf15)を指定して、ファイル選択する。

A ODFDisplay2 1.29YT[13/12/12] by CTR	x
File RoeModeEnable Help 3005 OtherODF Cubic	
ODF	
LaboTex popLA StdODF TexTools StdODF(c:¥OD Bunge	
ODED/TElletor ODE 15)	
C:¥ODF¥ODF15 (Bunge-phi2)	
Contour(Max=40)	
ODFMax= 6.65 DispMax 6 Steplevel 1 Number=6	
Sample Symmetry(φ1)	
Display	
Smoothing	
Cycle 1 Center points 9 Display	

ODFMax が表示され、表示する等高線の分割数が表示される。

SampleSymmetry(ϕ 1)領域に表示がないのは、ODF の ϕ 1 が 0 -> 9 0 のデータを表す。 Display 領域は

Display —					
Bunge			Roe		
📃 Phi 1	🔽 Phi2 📃] PHI	🔳 Phi 1	INT	all 👻
			1		

Bungeの φ 2 断面を全面表示として表示を示している。

φ	2	断	面の	選打	沢は
---	---	---	----	----	----

Display Bunge Roe Roe			all	-
	-11		60	
Smoothing			65	
Cycle 1 Center points 9	5		70	
	10		75	Ì
	15		80	
TASCI CONSPIRING IN ASCI	20	ZS	85	=
DF3-8-11 - Microsoft Word	25		90	
	30 🔻	-	30DF	Ŧ

a 1 1 : 全面、 単独、 3ODF : 3 面表示を指定できる。

 $\phi 2 表示は0->90になっていますが、選択されている<math>\phi 1 セクション上の\phi 2 角度を ODF図上に表示されます。$

全面表示を行うと

Fiber CubicCODisp OrientationDisplay ON MaxIndex=10 ODF

MaxODF Euler Angle F1=65.0 F=30.0 F2=60.0

最大ODF値のEuler角度を表わす。

4. 4. 1 Fiberメニュー

Smoothing-OFF: Fiberプロファイルの平滑化のON-OFF指定 BCCとFCCのFiberプロファイルの選択 Cubicとして計算されています。

1) BCC-Fiber

CubicのBCC-Fiber指定

各FiberのODF図上位置

θ -fiber η-fiber	φ2=5	φ2=10	φ2=15
ζ -fiber $\varphi_2 = 0$		¥2 25	Ψ2 20
φ2=20	φ2= 25	φ2= 30	φ2= 35
φ2=40	$\phi 2 = 45$ α -fiber ϵ -fiber γ -fiber	φ2=50	φ2= 55
φ2= 60	φ2= 65	φ2=70	φ2=75
φ2= 80	φ2= 85	φ2=90	0 90 ∳1 ¢2-0-90 ±-5.00 90 ⊕

入力データ odf15 のディレクトリにFIBERディレクトリが作成され、

🍌 FIBER	2013/04/11 8:44	ファイル フォル…	
퉬 PFDATA	2013/04/09 13:34	ファイル フォル…	
ODF15	2013/03/04 7:06	ファイル	28 KB
DDF15	2013/04/11 8:01	テキスト文書	235 KB

FIBERディレクトリに

• ▶ Window	rs-7-64-D0 (C:) • ODF • FIBER	1000	• * j
共有 ▼	書き込む 新しいフォルダー		
^	名前	更新日時	種類
	BCC-Gamma-fiber30-ODFSMOFF-SMOFF	2013/04/11 8:42	テキスト文書

表示したテキストファイルが作成される。

このファイルを元に、他の材料とNultiFiberDisplayで比較が可能になる。

2) FCC-Fiber

CubicのFCC-Fiber指定

各 F i b e r の O D F 図 上 位 置

β -skeletonを表示

<mark>β-skeleton(±5deg)</mark>は、copper 方位密度が Taylor 方位より大きくずれている場合用いる。

 β -skeleton と β -skeleton(±5deg)の違い

 β -skeleton は、内部で計算された Euler 角度の ODF 値を計算、平均も周辺の平均値を計算 β -skeleton ±5 は、計算された Euler 角度の周辺の最大値、平均化は 5 次の多項式近似

	Æ	3 -skelet	on	β -skelet	$ on \pm 5 $		
φ1		Φ	φ2	φ1	Φ	φ2	
90.	0	35.26	45.0	90.0	35.26	45.0	copper (90.0 35.26.0)
81.	24	35.19	49.37	81.24	35.19	50.0	
73.	15	35.4	53.9	73.15	35.4	55.0	
65.	73	35.91	58.59	65.73	35.91	60.0	
58.	98	36.7	63.43	58.98	36.7	65.0	S(58 98 36 7 63 43)
52.	9	37.78	68.43	52.9	37.78	70.0	5(50.50 50.1 55.15)
47.	48	39.15	73.59	47.48	39.15	75.0	
42.	74	40.81	78.9	42.74	40.81	80.0	
38.	67	42.76	84.37	38.67	42.76	85.0	$\mathbf{D}_{max}(25, 26, 45, 0, 00, 0)$
35.	26	45.0	90.0	35.26	45.0	90.0	Drass(55.26 45.0 90.0)

FIBERディレクトリにファイルが作成される。

Window	vs-7-64-D0 (C:) • ODF • FIBER		▼ 4 9 F	IBERの検索
共有 ▼	書き込む 新しいフォルダー			! ≡
<u>^</u>	名前	更新日時	種類	サイズ
	PCC-beta-fiber-ODFSMOFF-SMOFF< BCC-Gamma-fiber30-ODFSMOFF-SMOFF	2013/04/11 8:56 2013/04/11 8:42	テキスト文書 テキスト文書	1 KB 1 KB

4. 4. 2 CubicCODisp メニュー

CubicCODispソフトウエアを最大ODF値のEuler角度から{hkl<uvw>を計算し CubicCODispソフトウエアを立ち上げる。

4. 4. 3 OrientationDisplayメニュー

ODF図表示部分をマウスクリックすると、クリックされたEuler角度を読み取り、 結晶方位(hkl)[uvw]を計算し、結晶方位図が表示出来る。

DispOFF<->DispONを切り替え

結晶方位(hkl)[uvw]の最大指数を指定

Max 7 : {114}<17·2>を含む Max11:{4 4 11}<-11 -11 8>Taylor が含まれる。

Maxindex は、マウスクリックされた Euler 角度計算の最大値であるが、 最大値を超えた Index の場合、内部のデータベースを検索して Index が決められる

この場合、Maxiondex を超える場合もある。

マウスクリックで

4. 4. 4 ODFメニュー

登録された結晶方位(hkl)[uvw]の Euler 角度位置の OAF 値を比較する。 指定された ODF 値より大きい結晶方位がListアップされる。

\$				
Fiber CubicCODisp Orientation	onDisplay ODI	- Maxindex=10	DDF DataBa	ise
MaxODF Euler Angle F1=0	0.0 F=45.0 F2=0	0.0	to ODF±	5
phi2=0.0	phi2=5.0	phi2=10.0	ODF me	nber list 🔸
			ODF fam	nily list 🔸
ODF DataBase		ODF Data	Base	
to ODF±5		to ODF	F±5	
ODF menber list	1.00	ODF n	nenber list 🔸	
ODF family list	1.05	ODF fa	amily list 🛛 🕨	1.00
E C CE	1.10			1.05
	1.15			1.10
JY A X	1.20			1.15
	1 25			1.20
	1.00			1.25
	§ <u>1.30</u>			1.30
	1.35			1.35
	1.40			1.40
n ka	1.45			1.45
	1.50	🌺 🖗		1.50

ODFmenberlist (hkl)[uvw]のList ODFfamilylist {hkl {<uvw>のList

f a m i l y l i s t 例 (上部は ODF, 下部は ODF±5)

Orientation	φ1	Φ	φ2	ODF				
{0 1 1}<1 0 0> Goss	0.0	45.0	0.0	47.7				
{0 0 1}<1 0 0> cube	0.0	0.0	0.0	41.1				
{1 1 2}<-1 -1 1> copper	90.0	35.26	45.0	32.17				
{1 3 2}<6 -4 3> S	27.03	57.69	18.43	8.9				
{1 1 0}<1 -1 1> P	35.26	90.0	45.0	5.89				
{0 0 1}<1 -1 0> RW(H)	45.0	0.0	0.0	4.72				
{0 1 1}<2 -5 5>	74.21	45.0	0.0	3.87				
{1 0 1}<-1 -2 1> Brass	35.26	45.0	90.0	2.93				
{1 1 1}<0 -1 1>	60.0	54.74	45.0	1.02				
Orientation	φ1	Φ	φ2	ODF	nφ1	nΦ	nφ2	nODF
{0 1 1}<1 0 0> Goss	0.0	45.0	0.0	47.7				
{0 0 1}<1 0 0> cube	0.0	0.0	0.0	41.1				
{1 1 2}<-1 -1 1> copper	90.0	35.26	45.0	32.17				
{1 3 2}<6 -4 3> S	27.03	57.69	18.43	8.9				
{1 1 0}<1 -1 1> P	35.26	90.0	45.0	5.89				
{0 0 1}<1 -1 0> RW(H)	45.0	0.0	0.0	4.72	40.0	0.0	0.0	5.57
{0 1 1}<2 -5 5>	74.21	45.0	0.0	3.87				
{1 0 1}<-1 -2 1> Brass	35.26	45.0	90.0	2.93				
{1 1 1}<0 -1 1>	60.0	54.74	45.0	1.02				

List は Maxindex に左右される。

4.4.5 ODF3面表示

ODFDisplay2のメニューから Angle Change を選択

	File RoeModeEnable Help	3dispODF OtherODF
	ODF	Angle change
1	表示するφ2断面を選択	

<u>چ</u>
DispODF
0 ▼ 30 ▼ 45 ▼
Set

Displayで30DFを選択し、Display

Display Bunge Phi1 V Phi2 PHI	Roe	all	T
Smoothing Cycle 1 -	Center points 9	60 65 70 75 80	
		85 90 30DF	-

Display Bunge Phi1 Phi2 PHI	Roe Phi1	RINT	 30DF	•
Smoothing			 25	
Cycle 1 🔻	Center points	9 🗸	30	h
		·	 40	
			45	
			 50	
			55	
			60	-

4. 4. 7 ODFデータの平滑化

ODF 図が極端に歪でいる場合、平滑化行います。

平滑化を行うと、元のデータから平滑化されたODF図になりMax方位密度も変化します。

例えば、LaboTexのTriclinicDEMOデータC1_Triclinicの場合TexToolsでは以下の表示が行われます。

φ₂=0.00 Δ=5.00 180 Φ

ODF 図を Export し、赤枠の部分に適用してみます。

ODF データはFullでExportします。(f1:360,f2:360,F:180)

📙 LaboTex — yamada User					
<u>File</u> dit <u>V</u> iew <u>C</u> alculation <u>A</u> naly	vsis <u>M</u> odelling <u>H</u> elp				
<u>N</u> ew Sample/Project Open Sample Change/New <u>U</u> ser	●? Ⅲ№№ □ □ Φ				
ODF Export 🔹 🕨	ODF Export (Phi 1 Section)				
PF Export	ODF Export (Phi 2 Section)				
EPF/PPF/COR/POW/SOR Export	ODF Export (Phi 1, Phi 2, Phi, Odf) Basic area				
<u>P</u> rint	ODF Export(Phi1,Phi2,Phi) Full range				

Export されたデータの読み込み、結晶系を設定(機能制限します)

表示する ODF 図を選択する。

2 ODFDisplay2 138Y by CTR us	er Yamada Helpe	erTex			
File RoeModeEnable Help 3d	ispODF OtherC	DF Triclinic			
ODF LaboTex popLA StdODF TexTools StdODF(c:¥OD BUNGE					
ODFTXTFile(or ODF15) C¥debug¥C1_TriclinicTXT					
Contour (Max=40)					
ODFMax= 363.277 DispMax	363 Stepley	/el 10 Numb	per=36		
Sample Symmetry(¢1)					
Triclinic	et φ1:0->90 φ	2:0->90 Φ:0->9	90 🔽		
Display Bunge Phi1 ☑ PHI Phi2 PHI 0 ♥					
Smoothing Cycle 9 Center points 5 Display					
Smoothine Cycle 9 Center points 5		Cycle 9 🗸 C	enter points 5		
MaxODF Euler Angle F1=10.0 F=45.0 F2=0.0 M	MaxODF Euler An	gle F1=10.0 F=45.0 F2=0.0	SM= 9(5) Max=117.06		
	are 33.27 in 0.0 360.0 360.0 360.0 340.0 310.0 320.0 270.0 200.		Mike 36 37 Mice 36 37 Mice 36 00 3600 3600 3800 3800 3800 3800 3800 3800 3800 3800 2900 1800		
Image: second secon	are 33.27 in 0.0 360.0 360.0 360.0 360.0 360.0 360.0 370.0 200.0 200.		Mike 36 37 Mike 36 37 0 00 3800 3800 3800 3800 3800 3800 3800 200 2		

平滑化9(5)を行うと Max 方位密度が 363.27->117.06 に変化しています。 しかし、大分見やすくなります。

5. 内臓データベース

結晶方位密度Listは内臓されている結晶方位の方位密度を計算し、方位密度順に並べ替えて 表示しています。文献や経験的に頻繁に出現する方位を追加しています。 Ver1.36 で登録されている方位は

		$\phi 1$	Φ	$\phi 2$	
1	{0 0 1}<1 0 0>	0.0	0.0	0.0	cube
2	{1 1 2}<1 1 -1>	0.0	35.26	45.0	copper
3	{1 0 1}<-1 -2 1>	5.26	45.0	90.0	Brass
4	{0 1 1}<1 0 0>	0.0	45.0	0.0	Goss
5	{2 1 3 }< -1 -4 2>	6.91	36.7	63.43	R
6	{2 1 3}<-3 -6 4>	8.98	36.70	63.43	S
7	{1 1 0}<1-11>	5.26	90.0	45.0	Р
8	{0 0 1}<1 -10>	5.0	0.0	0.0	RW(or H)
9	{4 4 11}<-11-11 8>	90.0	27.21	45.0	Taylor
10	{0 0 1}<2 -1 0>	0.0	26.57	0.0	CH
11	{0 1 2}<1 0 0>	0.0	26.57	0.0	Q1
12	{1 1 3}<-3 -3 2>	90.0	25.24	45.0	$\mathbf{Q}2$
13	{3 6 2}<-8 5 -3>	18.43	73.40	26.57	$\mathbf{Q}3$
14	{0 1 1 }<5 -2 2>	29.5	45.0	0.0	L
15	{0 1 1}<2 -5 5>	15.23	47.12	0.0	
16	{5 2 5}<1 -5 1>	15.23	47.12	68.20	
17	{0 1 3}<1 0 0>	0.0	18.43	0.0	
18	{1 2 2}<2 -2 1>	26.57	48.19	26.57	
19	{1 1 3}<1 -1 0>	0.0	25.24	45.0	
20	{1 1 1}<0 -1 1>	60.0	54.74	45.0	
21	{1 1 4}<-1 -7 2>	54.57	19.47	45.0	
22	{2 3 3}<0 -1 1>	66.91	50.24	33.69	
23	{ 1 1 2}<1 -1 0>	0.0	35.26	45.0	
24	{1 1 1}<-1 -1 2>	90.0	54.74	45.0	

5.1 検索データベースの指定

ODFdisplayのメニュー DataBase->Dispで 検索する {hkl} <uvw>を選択、非選択を行う。

환	
Fiber CubicCODisp OrientationDisplay ON MaxIndex=6 ODF	DataBase
MaxODF Euler Angle F1=35.0 F=65.0 F2=15.0	Disp

通常はすべて選択で行う。

A

[0 0 1]<1 0 0> cube			☑ {0 1 1 }<1 0 0> Goss	
		☑ {1 1 1}<-1 -1 2>	☑ {0 1 1 }<2 -5 5>	
☑ {5 2 5}<1 -5 1>	☑ {0 1 3}<1 0 0>	☑ {1 2 2}<-2 -2 1>	☑ {1 1 3}<1 -1 0>	
☑ {1 1 2}<1 -1 0>	☑ {2 3 3}<0 -1 1>	☑ {1 1 1}<0 -1 1>		
	☑ {1 1 4}<-1 -7 2>			
		☑ {3 6 2}<-8 5 -3> Q3		
OK Cancel				

6. 外部からODF図を表示

本ソフトウエア以外からODF図を表示させ、各種ODF図処理を利用する場合。

以下の手順でデータを渡し表示させます・

CALCPATH: 入力極点図のパス

ODF.TXT: LaboTex フォーマットの ODF テキストデータ

ODFDisdplay2 の場合

String command = "java -jar C:¥¥CTR¥¥bin¥¥ODFDisplay2.jar -LABOTEX " + CALCPATH + "¥¥" + "ODF.TXT";

或いは

Command[0]="java"; Command[1]="-jar"; Command[[2]="C:¥¥CTR¥¥bin¥¥ODFDisplay2.jar"; Command[3]="-LABOTEX"; Command[4]=CALCPATH+"¥¥ODF.TXT";