極点処理から ODF 解析のチュートリアル

LaboTex 編(規格化はKearnsMethod) 異方性も材料特性に影響します。異方性の表現方法として、結晶方位{hkl}<uvw>があります。 極点図から結晶方位計算に関して LaboTtex を用いて説明します。

ODF 解析から求められる ODF 図(結晶方位図)

結晶方位図から{hkl}<uvw>を求める。

CTR パッケージソフトウエアとLaboTexを使用します。

極点図から{hkl}<uvw>を求める過程は

極点図のデータ処理(バックグランド除去、RD 補正、吸収補正、defocus 補正、平滑化) ODF解析ファイル作成

ODF解析

ODF 解析 Error評価

{hkl}<uvw>の決定と VolumeFraction 算出

があります。

例 C:\CTR\DATA\ODFPoleFigurte2のAluminum 極点図を処理する

1. 極点図処理

測定データの選択 defocus ファイル指定
M ODFPoleFigure2 3.54YMT[17/03/31] by CTR - 🗆 🗙
File Linear(absolute)Contour ToolKit Help InitSet BGMode Measure Condition Free OverlapRevision MinimumMode Rp% Standardize
ASC(RINI-PC)
- Calcration Condition
Previous Next C#OTR#DATA#ODFPoleFigure2#111.ASC
Backgroud delete mode
🗹 🖲 DoubleMode 🔿 SingleMo 🔿 LowMode 🔿 HighMode 🔿 Nothing BG defocus DSH1.2mm+Schulz+RSH5mm 🗸 🔤 Minimum mo 🔲 3 🗸 Arithmetic mean 🔹 Disp
Peak slit 7.0 mm BG Slit 7.0 mm V PeakSlit / BGSfit BG Scope 80.0 deg. 90.0 deg. Set Disp
AbsCalc
Schulz reflection method V Absorption coefficien 133.0 1/cm Thickness 0.2 cm V 2Theta 38.46 deg. 1/Kt Profile
Defocus file Select
O Defocus(1) functions file C#CTR#DATA#AI-powder-random#defocus#DEFOCUS_F.TXT
Make defocus function files by TXT2 Files V V Standardize
O Defocus(3) function files folder(Calc unbackdefocus) BB185mm V Limit Alfa Defocus value Free(LimitValue=0.0) V
O Defocus(2) function files folder(Calc backdefocus) DSH12mm+Schulz+RSH5mm ✓ ☑ Search minimum Ro%(Cubic only) ● 1/Ra Profile
Smoothing for ADC
Value@PFVF-B ValueODFVF-A

最適化 Rp%

極点処理を開始

極点処理した極点図が表示されます。

ODF 解析のためのファイル作成画面を作成

2. ODF解析ファイル作成

極点データ処理したファイルが表示されている

Lattice con	stant									 	ze —		
Mat	erial Alu	minum.txt										Start	
Structure	Code(Symme	tries after	Schoenfi	les)	7	- O (cubi	5)		~	٥ و			
a 1.0	<=b 1.0	<=C	1.0	alfa	90.0	beta	90.0	gamm	90.0		🖇 AllFik	eSelect	
PF Data —													
	SelectFile(T	XT(b,inten	s),TXT2(a	,b,intens,))	h,k,l	2Thet	а	Alfa Area	AlfaS	AlfaE	Select	
2	111_chB00D1C	AS_2.TXT				1,1,1	0.0		0.0->75.0	0.0	75.0	✓	
2	200_chB00D1C	AS_2.TXT				2,0,0	0.0).0->75.0	0.0	75.0		
2	220_chB00D1C	AS_2.TXT				2,2,0	0.0).0->75.0	0.0	75.0	✓	
2						2,1,0	0.0			0.0	0.0		
2						2,1,1	0.0			0.0	0.0		
2						3,1,1	0.0			0.0	0.0		
2						4,0,0	0.0			0.0	0.0		
2						3,3,1	0.0			0.0	0.0		
2						4,2,2	0.0			0.0	0.0		
2						5,1,1	0.0			0.0	0.0		
2						5,2,1	0.0			0.0	0.0		
2						5,3,1	0.0			0.0	0.0		
Comment	: 111_chB0(ID1CAS_2	.TXT 200 <u>.</u>	chB00D1	CAS_2.TX	T 220_chB	00D1CAS_2	.TXT					
			∟CenterΓ)ata —					Labotex(B	PF),popL	A(RAW)	filename -	
Symmetr	ic type Full		O Ave	rage		Epf fil	e save		PF2				

🐌 CTRODF	2016/10/13 4:23	ファイル フォルダー	
퉬 StandardODF	2016/10/13 5:42	ファイル フォルダー	
🌗 LaboTex	2016/10/13 7:44	ファイル フォルダー	
ū <mark>ų</mark> 200	2012/07/25 10:15	RINT200077+-	22 KB
🖽 220	2012/07/25 10:15	RINT200077+-	22 KB
📭 311	2012/07/25 10:15	RINT200077+-	22 KB
🕰 111	2012/07/25 10:15	RINT200077+-	22 KB
📳 111_chB00D1CAS_2	2016/10/13 5:20	テキスト文書	26 KB
\min 200_chB00D1CAS_2	2016/10/13 5:20	テキスト文書	26 KB
🛍 220_chB00D1CAS_2	2016/10/13 5:20	テキスト文書	26 KB

LaboTex ホルダ以下にファイルが作成されます。

このファイルを LaboTex で読み込みます。

3. ODF 解析

🙆 🕂 D 🖨 🗩 🚺 🖓 📳 🗐 🔋 🎹 🖾 💷 🖽 🖾 🖾 💷 🖾 🖾 💭 🖬 🐺 🚺 🖬 🖉 🗶 🖄 🖉 🗰 🖾 2D 3D 😂 🌐

ODF 解析はこのメユーから入ります。

Rp%が6.9%で計算されています。

$$RP_{\{hkl\}} = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\{PF_{\exp}\}_{i} - \{PF_{calc.}\}_{i}}{\{PF_{\exp}\}_{i}} \right| \cdot 100\%$$

 $\begin{aligned} RP_{\{hkl\}} &- \text{ relative error for } \{hkl\} \text{ pole figure,} \\ \left\{ PF_{\text{exp.}} \right\}_i \text{ - intensity of experimental (corrected and normalized) pole figure in point i,} \\ \left\{ PF_{calc.} \right\}_i \text{ - intensity of calculated pole figure in point i,} \end{aligned}$

 ${\cal N}\,$ - number of measured points on pole figure.

$$RP = \frac{1}{M} \sum_{j=1}^{M} RP_{\{hkl\}_j}$$

5. ODF 解析結果から Error の評価

入力極点図と再計算極点図を Export します。

Export したファイルを ValueODF-VF ソフトウエアで読み込み

C:¥CTR¥DATA¥ODFPoleFigure2¥LaboTex¥CW PF2-PF.TPF Average= 2.3 %

通常、LaboTex の Rp%より少ない値が							
計算されます。							
ValueODF-VF ソフトウエアでは							
計算限界値により、小さな極密度は							
計算に含めていません。							

グラフはα軸に対する、Rp%の挙動を表現しています。

±1.5%を超えたり、プロファイルの右側付近(defocus 補正量の大きい部分)をチェックします。 このデータでは異常ありません。

5. {hkl}<uvw>の決定と VolumeFraction

Quantitative Analysis - Model Functions Method - Project: Demo Sample:PF2 Job:1												
Crystal Symmetry Sample S (Cubic)	6ymmetry rthorhombic	Grid Cells for C	Dutput ODF 5.0×5.0	Step 0.50 Diagram Range +/- 45.0								
100.0%	100.0%	Centre of Orientatio	on 100.0%	Centre of Orientation								
0.50 FWHM P1 = 10.0	45.0 0.50 On Distribution	FVHMΦ = 10.0 FVHM ² FVHM ² FVHM ² FVHM ⁴ FVHM ⁴ FVH ⁴ FVHM	45.0 FWHM P2 Volume Fraction	0.50 FYHM 1 = 10.0 45.0 Show Sym. Eq.								
2 {0 01 × 1 00 × cube 3 {0 13 × 1 00 × cube •	I▼ Gauss ▼ I▼ Gauss ▼	10.0 10.0 10.0 10.0 10.0 10.0	10.0 15 10.0 15 10.0 12	% Calculation Mode % © Automatic © Manual								
4 { 0 1 6} 0 .6 1> 5 { 1 1 0} 1 .1 2> brass 6 { 1 3 2} 6 .4 3> 5.1 •	 ✓ Gauss ▼ ✓ Gauss ▼ ✓ Gauss ▼ 	10.0 10.0 10.0 10.0 10.0 10.0	10.0 8 ÷ 10.0 8 ÷	% Max. Iteration Number : 1,000 ÷ % Max. Fit Error % (*1000) : 100 →								
7 {1 1 2 × 1 1 ·1 > copper 8 {1 1 0 × 1 ·1 1 > 9 {1 2 3 × 4 1 ·2 > B	Gauss - Gauss -	10.0 10.0 10.0 10.0	10.0 8 ÷	% Iteration :								
Image: Second												
Fix Initial Parameters	Fix Initial Parameters Start Volume Fraction Calculation Exit Exit											

S 方位が大きな値になっているので、β-Fiber が発達しています。

入力極点図から計算した ODF 図

入力極点図と再計算極点図

VolumeFraction 結果の表示(ODFAfter->ODFVFGraph プログラムで表示)

ODFAfter->CompareVolumeFraction プログラムで表示

6. 簡易Rp%を事前に検索する方法

ODFPoleFigure1.5 で Search Rp%モードで解析を行う。

M ODFPolefigure1.5 1.31MT[17/03/31] by CTR	- 🗆 🗙
File Linear(Contour) ToolKit Help InitSet Rp%	
Files select ASC(RINT-PC) V 200-OSCASC 200-OSCASC 220-OSCASC	
Calcration Condition Previous Next C#OTR#DATA#ODFPoleFigure#111-OSCASC Rekroud delete mode	eht 9 V Disp
✓ ● DoubleMode ○ SingleMode ○ LowMode ○ HighMode ○ Nothing Set Disp □ 0.0 Interporation ✓	Full Disp
AbsCalc Schulz reflection method v Absorption coefficien 1/cm Thickness 1.0 cm 2Theta 38.42 deg. 0 1	1/Kt Profile
TXT2 C*CTR*DATA*Al-powder-random#defocus*DEFOCUS_F.TXT TextDisp	cus val Free v
Standardize - CenterData - OutFiles CTR Average Asc O Ras O TXT2 O TXT Search minimum RpMCubic onl. ValueODF ValuODF-A Cancel Ca	alc ODF File
✓ 🚰 TXT2 C¥CIK¥DAIA¥AI-powder-random¥detocus¥D±POCUS_F.TXT IextDisp ● 1/Ra Profile Lin	nit Alfa Defocus val Free

Standardize - Cen	iterData — CutFiles —				-					
🗹 CTR 🗹	Average 🛛 🔿 Asc	🔿 Ras	• TXT2	⊖ TXT ()	✓ Search minimum Rp%(Cubic onl	ValueODF	ValuODF-A	Cancel	Calc	ODF File
]					

Search Rp% (1,1,1) 5.8% → 1.71% (2,0,0) 4.15% → 3.44% (2,2,0) 4.68% → 3.1% Filemake success!!

この試料は、SearchによりRp%は改善されます。

7. 粒径の粗い材料の場合、ODF図の平滑化

平滑化したODF図から極点図、逆極点図、VolumeFraction 計算も可能になります。

以下は EBSD データを読み込み、ODF 図の平滑化を行った例

EBSD データから解析 Job1、

Job1(Triclinic) -> Job2(Ortorombic)

Job 2->LaboTexODFFile ソフトウエアで平滑化し Job3 を作成

再計算極点図比較(上段:Job1 (Triclinic),中段:Job2 (Orthorombic),下段:Job3(平滑化))

