MTEXソフトウエアと周辺ソフトウエアの使い方

(Rigaku, Bruker, PANalytical データに対応)

1. 概要

MATLABベースのMTEXはフリーのODF解析ソフトウエアでEBSD,XRDで 使われている。 MATLABの試用期間中に、リガクXRD測定極点図からCTRソフトウエアで極点処理を行い MTEXの読み込み、ODF解析、再計算極点図、逆極点図を描画し、操作手順をまとめた。 試行錯誤であるは、解析結果は正しい、Hermonic法とADC法の中間の値が得られる。 Bruker(Uxd)社データは、UxdtoAscでAscデータ変換

PANalytical (txt, xrdml) 社データはPANatoAscでAsc変換 を行いCTRソフトウエアを介してMTEXソフトウエアで解析可能になります。

2. 解析に使用した入力データ

測定装置 リガク製RINT2200+多目的試料台

測定試料 A1材

- 3. 極点図データ補正
 - 3. 1 ODFPoleFigure2 ソフトウエア

(詳しくは、<u>http://www.geocities.jp/helpertex2</u>)

ODFPoleFigure2 ソフトウエアを起動

M ODFPoleFigure2 3.70SKT[18/03/31] by CTR	- 🗆 🗙
File Linear(absolute)3D ToolKit Help InitSet BGMode Measure Condition Free OverlapRevision MinimumMode Rp% Normalization	
Files select ASC(RINT-PC)	
Calcration Condition Previous Next Backgroud delete mode Image: SingleMode ○ singleMode ○ lighMode ● Nathing Ø OpubleMode ○ singleMode ○ lighMode ● Nathing BG defocus DSH12mm+Schulz+RSH5mm ▼ Minimum mode Minimum(α, β) MinimumAverage(α)X	hkl 0.0,0 Change Smoothing 3 v Arithmetic mean v α RD 0.0 Interportation V Pull
Peak slit 7.0 mm BG Slit 7.0 min ✓ Peak Slit / BGS BG Scope 80 deg. 90 deg. Set Disp ∞ Inhibit AbsCalc	1/Kt Profile
Defocus file Select	
Defocus(1) functions file C#CTRWDATAWAI-powder-randomWdefocus#DEFOCUS_F.TXT Make defocus function files by TXT2 Files V Normalization	TextDisp
O Defocus(3) function files folde (Calc unbackdefocus) BB185mm V Limit Alfa Defocus value Free(LimitValue=0.0)	
O Defocus(2) function files folde (Calc backdefocus) DSH12mm+Schulz+RSH5mm V Search minimum Equal Angle RpM(Cubic only)	• I/Ra Profile
Smoothing for ADC	Cancel Calc Exit&ODF ODF
Cycles 2 v Weight 10 v Disp CTR Average Asc MAsc Ras TXT TXT2	ValueODFVF-B ValueODFVF-A

3.1 測定データの選択

3.2 データ処理条件を設定する。

バックグランドは計算で補正する。

M ODFPoleFigure2 3.70SKT[18/03/31] by CTR – 🗆 📉		
File Linear(absolute)3D ToolKit Help InitSet BGMode Measure Condition Free OverlapRevision MinimumMode Rp% Normalization		
Files select ASC(RINT-PC) V 200 ASC 220 ASC		
Calcration Condition Previous Next C*CTR#DATA#0DFPoleFigure2#111ASC hkl 1.1.1 Change Back roud delete mode Back roud delete mode Smoothing Smoothing Smoothing 3 v Arithmetic mean v Ø α Disp Minimum(α β) MinimumAverage(α)X 0.5 Peak slit 7.0 mm PeakSlit / BGS BG Scope 80.0 deg. Set Disp α Inhibit Disp AbsCalc Schulz reflection method v Absorption coefficien 13.9 1/cm Thickness 0.1 cm 2 Theta 38.46 deg. 1/Kt Profile 		
c Defocus file Select		
O Defocus(1) functions file O VCTR#DATA#AI-powder-random#defocus#DEFOCUS_F.TXT Make defocus function files by TXT2 Files V I Normalization TextDisp TextDisp		
O Defocus(2) function files folder(Calc backdefocus) DSH12mm+Schulz+RSH5mm Image Control of the second of the		
Smoothing for ADC Cycles 2 V Weight 10 V Disp V CTR OutFiles OutF		
defocysはrandomサンプルを用いて計算する 5度間隔の場合β終了角度:Asc(360)、MAsc(355)		

CalcErrorPFO対策で 73->72 にしたが機能せず

3.3 一括正極点図データ処理

Calc で各種計算が始まり

処理された極点図が表示される

C:¥CTR¥DATA¥ODFPoleFigure2¥111.ASC C:¥CTR¥DATA¥ODFPoleFigure2¥200.ASC C:¥CTR¥DATA¥ODFPoleFigure2¥220.ASC C:¥CTR¥DATA¥ODFPoleFigure2¥311.ASC C:¥CTR¥DATA¥ODFPoleFigure2¥111_chB00D1CAS_2.TXT C:¥CTR¥DATA¥ODFPoleFigure2¥200_chB00D1CAS_2.TXT C:¥CTR¥DATA¥ODFPoleFigure2¥220_chB00D1CAS_2.TXT C:¥CTR¥DATA¥ODFPoleFigure2¥NEW¥111_chB00D1CAS_2.asc C:¥CTR¥DATA¥ODFPoleFigure2¥NEW¥200_chB00D1CAS_2.asc C:¥CTR¥DATA¥ODFPoleFigure2¥NEW¥200_chB00D1CAS_2.asc

Cancel	Calc	Connect
Exit&ODF	OD	F

でMTEX入力データ作成

		PFtoODF3 8.41SKT[19/09/30] by CTR – 🗆 🗙				
ile	Option Symmetric Software Data Help					
		Outside text(Vector) CCW	-			InitializeStart
		Outside CSV(Vector) CCW			1	
		Inside text CCW	iles)	7 - 0 (cubic)	~	● getHKL<-Filename
		*Labotex(EPF) CW	alpha 90.0	D beta 90	0.0 gamm 90.0	AllFileSelect
	-	Stadard ODF CCW				
		Siemens CCW	a,b,intens.))	h,k,l	2Theta Alpha scope	AlphaS AlphaE Select
		TexTools(txt) CCW		1,1,1	38.46 0.0->75.0	0.0 75.0
		*TexTools(pol) CCW		2,0,0	44.7 0.0->75.0	0.0 75.0
		TexTools(pol) CW		2,2,0	65.08 0.0->75.0	0.0 75.0
		*TexTools(pol)CCW-zerocut		2,1,0	0.0	0.0 0.0
		TexTools(pol)CW-zerocut		2,1,1	0.0	0.0 0.0
		*popLA(RAW)CCW		3,1,1	0.0	0.0 0.0
		popLA(RAW)CW		4,0,0	0.0	0.0 0.0
		StandaradODF2.5 CCW	-	3,3,1	0.0	0.0 0.0
		Bunge(PF) CCW		4,2,2	0.0	0.0 0.0
		MulTex(TD:beta=0)CCWTXT2		5,1,1	0.0	0.0 0.0
		Labotex(EPF) CCW		5,2,1	0.0	0.0 0.0
		MTEX(ASC) CCW		5,3,1	0.0	0.0 0.0
[-	LaboTex(PPF) CW	XT 200 ch8000	15 2 chED15 17	XT 220 cbB00D1S 2 cbED1	S 2 TXT
	-	*LaboTex(PPF) ATEX CCW		/10_2_01FD13_2.1	- Labotex(E	PF),popLA(RAW) filename —
	Syr	mmetric type Full	verage	Epf file s	ave	

新たにMTEXホルダが作成されMTEX入力データが作成される。

フォルダを作成したA	SCデータホルダに移動し、	import_wizard

*	MATLAB R2017b		- 🗆 🗙
ホーム プロット アフ) 🕝 📴 🕐 ドキュメンテーションの検索	🔎 義行 👻
	□ファイルの検索 □ ファイルの検索 □ 「 ータの ワークスペースの □ ☆ ◎ □ ☆ ◎ □ ☆ ◎ □ ☆ ◎ □ ☆ ◎ □ ☆ ◎ □ ☆ ◎ □ ☆ ◎ □ ☆ ◎ □ ☆ ◎ □ ☆ ◎ □ ☆ ◎ □ ☆ ◎ □ ☆ ◎ □ ☆ ◎ □ ☆ ◎ □ ☆ ◎ □ ☆ ◎ □ □ ☆ ● □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	視変数 数を開く → コード 環境 リソース ークスペースのクリア ◆ ◆ ◆ ◆	Ā
	A ► ODFPoleFigure2 ► NEW		م -
現在のフォルダー ③ コマンドウ	バンドウ	 ワークスペーン 	র 💿
▲ 名前▲ 方 >> i	mport_wizard	名前 🔺	値
▲ 準備完了			

+でASCファイルを複数選択

Import Wizard	- 🗆 🗙
Import Pole Figures Select Data Files	
Pole Figures FRSD ODF Tensor	xrd
Data Background Defocusing Defocusing RG 111_ch800D1CAS_2.asc 200_ch800D1CAS_2.asc 220_ch800D1CAS_2.asc 220_ch800D1CAS_2.asc 220_ch800D1CAS_2.asc 220_ch800D1CAS_2.asc	
Plot << Previous Next >>	Finish

Load Cif File	^で Aliminum を選択			
	Import Wizard 🗕 🗆 🗙			
Crystal Reference Frame Crystal Symmetry				
-Mineral				
Indexed	O Not Indexed			
mineral name	Aluminum Load Cif File			
plotting color	light blue 🗸			
Crystal Coordina	ate System			
Point Group	m-3m 🗸 🗸			
Axis Length	а 4.04958 b 4.04958 с 4.04958			
Axis Angle	alpha 90 beta 90 gamma 90			
Plot	<< Previous Next >> Finish			

Import Wizard – 🗆 🗙
Specimen Reference Frame Specimen Symmetry
Specimen Coordinate System rotate data by Euler angles (Bunge) in degree 0 0 0
specimen symmetry -1 triclinic 🗸
$\begin{array}{c} \text{MTEX Plotting Convention} \\ \hline \mathbf{Y}_{t} \\ \mathbf{z}_{t} \mathbf{x} \\ \mathbf{x}_{t} \mathbf{x}_{t} \\ $
Plot << Previous Next >> Finish

最大値を表示

Next >>

	Import Wizard 🛛 🗕 🗆 🗙
Miller Ind Correct Mille	dices r Indices
Imported Pole (111) (200) (220)	Pigure Data Sets 111_ch80001CAS_2.asc Miller Indeces 200_ch800D1CAS_2.asc h 220_ch800D1CAS_2.asc i 1 i
For superpos	ed pole figures seperate multiple Miller indece and structure
Plot	<< Previous Next >> Finish

作成されたコード % crystal symmetry

% crystal symmetry CS = crystalSymmetry('m-3m', [4.0496 4.0496 4.0496], 'mineral', 'Aluminum', 'color', 'light blue');	
% specimen symmetry SS = specimenSymmetry('1');	
% plotting convention setMTEXpref('xAxisDirection','north'); setMTEXpref('zAxisDirection','outOfPlane');	
%% Specify File Names	
% path to files pname = 'C:¥CTR¥DATA¥ODFPoleFigure2¥NEW';	
<pre>% which files to be imported fname = { [pname '¥111_chB00D1CAS_2.asc'], [pname '¥200_chB00D1CAS_2.asc'], [pname '¥220_chB00D1CAS_2.asc'], };</pre>	
<pre>%% Specify Miller Indice h = { Miller(1,1,1,CS), Miller(2,0,0,CS), Miller(2,2,0,CS), };</pre>	
%% Import the Data	
% create a Pole Figure variable containing the data pf = loadPoleFigure(fname,h,CS,SS,'interface','xrd');	

📤 フォルダーの非表示

保存(S)

キャンセル

作成されたデータが表示される

p f から ODF の計算

>> odf=calcODF(pf)
----- MTEX -- PDF to ODF inversion -----Call c-routine
initialize solver
start iteration
error: 3.1146E-001 1.1795E-001 3.3260E-002 1.7239E-002 1.3419E-002 1.1554E-002 1.0147E-002 9.1746E-003 8.4108E-003 7.8130E-003 7.3089E-003
Finished PDF-ODF inversion.
error: 7.3089E-003
alpha: 1.0424E+000 1.0807E+000 9.4659E-001
required time: 4s

odf = <u>ODF</u> (<u>show methods</u>, <u>plot</u>) crystal symmetry : Aluminum (432)

specimen symmetry: 1 Radially symmetric portion:

kernel: de la Vallee Poussin, halfwidth 5° center: 4955 orientations, resolution: 5° weight: 1

od f から ODF 図の表示

>> plot(odf,'contour','sections',18)

ODF図のExport

export(odf,'ODF.TXT')

DDF.TXT

2019/02/12 6:56 テキスト文書 854 KB

odfから再計算極点図表示

```
>> pdf=calcPoleFigure(odf,h,'resolition',5*degree)
pdf = PoleFigure (show methods, plot)
    crystal symmetry : Aluminum (432)
    specimen symmetry: 222
    h = (111), r = 72 x 19 points
    h = (200), r = 72 x 19 points
    h = (220), r = 72 x 19 points
>> plot(pdf,'contour')
```


極点図のEXport export(pf,'PF')

PF_(220).txt	2019/02/12 6:57
📲 PF_(200).txt	2019/02/12 6:57
🖳 PF_(111).txt	2019/02/12 6:57

>> r=[zvector,yvector,xvector]

```
r = <u>vector3d</u> (<u>show methods</u>, <u>plot</u>)
size: 1 x 3
x y z
0 0 1
0 1 0
1 0 0
```

>> plotIPDF(odf,r)

>> plotIPDF(odf,r,'contour')

逆極点図の Export exportIPDF(odf,zvector,'ND.TXT') 配.TXT

2019/02/12 7:01 テキスト文書

35 KB

Export したデータの処理

111R.ASC	2019/02/12 7:31	RINT2000774-	17 KB
1 200R.ASC	2019/02/12 7:31	RINT2000774-	17 KB
1220R.ASC	2019/02/12 7:31	RINT2000774-	17 KB
🕵 Untitled.m	2019/02/12 7:45	M ファイル	2 KB
DDF.TXT	2019/02/12 7:46	テキスト文書	854 KB
ND.TXT	2019/02/12 7:48	テキスト文書	35 KB
📳 PF_(111).txt	2019/02/12 7:49	テキスト文書	67 KB
📳 PF_(200).txt	2019/02/12 7:49	テキスト文書	67 KB
📳 PF_(220).txt	2019/02/12 7:49	テキスト文書	67 KB

workフォルダを選択

で入力データのError評価

±1.5%以内でほぼ正常である。

この再計算極点図から CTR ソフトウエアの各種処理が利用可能

GPInverseDisplay

で逆極点図表示

File Help		
r Material		
Δluminum.TXT a 4.0494 b 4.0494 c 4.0494 α 90.0 β 90.0 γ 90.0 ODF		
Method Direction Miller Nortation(3 Axis Nortation)		
Inverse data select C:\CTR\DATA\ODFPoleFigure2\MTEX\ND.TXT List		
Inverse Display Inverse max val 0.0 2D v 3D Max value 0.3 < 1.0 Window size 800 V Cycles 9 v Weight 5 v Inverse Data Filename 12 v Display Contost Display Contost Display Center[001] Level 0 Peak serach MaxFix 10 Inverse Display		

この逆極点図から CTR ソフトウエアの各種処理が利用可能

逆極点プロファイル

36BOXの定量

36Boxから逆極点図外周部分の方位で表示

-D- Invese%

GPODFDisplay 1.56ST[19/09/30] by CTI File Aluminum View Search 7.0,7,false Help Fiber ODF DataBase Rest LaboTex ODF Export (PHI1 PHI2 PHI ODF)(Hexa:AorB) TexTools ODF Export (Hexa:A-Type) StandardODF (ODF15,ODF15.bin) NewODF(f1 F f2 Value) popLA (Hexa: AType) 360 ψ2=0->90 step=5.0 DhmsBunge (*.EOD) MTEX(f1 F f2 Value) 19/02/12 MTEX(Triclinic(1/4) to Orthorhombic) (Hexa B1 Triclinic->Orthorombicを行う filename: C:\CTR\DATA\ODFPoleFigure2\MTEX\ODF.TXT Max=7.29 Min=0.01

- 🗆 🗙

Max=7.29 Min=0.01

____ 7.0 ____ 6.0 ____ 5.0 ____ 4.0 ____ 3.0 ____ 2.0 ____ 1.0

GPODFDisplay

でODF図表示

GPODFDisplay 1.56ST[19/09/30] by CTR

ew Search 7.0,7,false Help Fiber O C:\CTR\DATA\ODFPoleFigure2\MTEX\ODF.TXT

ψ1=2.0 Φ=44.5 ψ2=0.0 ODF=5.2 ---> (0,1,1)[1,0,0] ψ1=0.0 Φ=45.0 ψ2=0.0

この ODF 図から CTR ソフトウエアの各種処理が利用可能

例えば

で結晶方位リストを表示

