極点処理から ODF 解析のチュートリアル

StandardODF 編(規格化は、KearnsMethod)

異方性も材料特性に影響します。異方性の表現方法として、結晶方位{hkl}<uvw>があります。 極点図から結晶方位計算に関して StandardODF を用いて説明します。

ODF 解析から求められる ODF 図 (結晶方位図)

結晶方位図から{hkl}<uvw>を求める。

CTR パッケージソフトウエアと StandardODF を使用します。

極点図から{hkl}<uvw>を求める過程は

極点図のデータ処理(バックグランド除去、RD 補正、吸収補正、defocus 補正、平滑化)

ODF解析ファイル作成

ODF 解析

ODF解析Error評価

{hkl}<uvw>の決定

があります。

例 C:\CTR\DATA\ODFPoleFigurte2のAluminum極点図を処理する

1. 極点図処理

測定データを複数同時選択 defocus ファイル指定 ODFPoleFigure2/3.54YMT[17/03/31] by CTR File Linear(absolute)Contour ToolKit Help InitSet BGMode Measure Condition Free OverlapRevision MinimumMode Rp% Standardize Files select ▼ 111.ASC 200.ASC 220.ASC ASC(RINT-PC) Calcration Condition Previous Next C.\(\pmacrox\) Next C.\(\pmacrox\) NEXTR\(\pmacrox\) DFPoleFigure2\(\pmacrox\) 111.ASC 1,1,1 Change Backgroud delete mode 3 v Arithmetic mean ✓ Disp BG Scope 80.0 deg. 90.0 deg. Set Disp Peak slit 7.0 mm BG Slit 7.0 mm ▼ PeakSlit / BGS/lit 0.0 Interporation V Schulz reflection method → Absorption coefficien 133.0 1/cm. Thickness 0.2 cm ∨ 2Theta 38.46 deg. ● 1/Kt Defocus file Select-C¥CTR¥DATA¥AI-powder-random¥defocus¥DEFOCUS_F.TXT Defocus(1) functions file Make defocus function files by TXT2 Files ✓ Standardize TextDisp Limit Alfa Defocus value Free(LimitValue=0.0) v O Defocus(3) function files folder(Calc unbackdefocus) BB185mm ✓ Search minimum Rp%(Cubic only): 1/Ra O Defocus(2) function files folder(Calc backdefocus) DSH1.2mm+Schulz+RSH5mm Profile Standardize -OutFile -CenterData -Calc Exit&ODF ODF Cancel ☐ Cycles 2 ∨ Weight 4 ∨ Disp ✓ CTR Asc ○ Ras ○ TXT ● TXT2 Average Value FVF-B ValueODFVF-A

最適化Rp%の指定

極点処理を開始

極点処理した極点図が表示されます。

最適化された Rp%が表示されます。

Search Rp% (1,1,1) 3.76% -> 2.64% (2,0,0) 4.28% -> 3.49% (2,2,0) 5.22% -> 4.18% Filemake success!!

Search Rp% (1,1,1) 3.75% -> 3.11% (2,0,0) 4.28% -> 4.22% (2,2,0) 5.22% -> 4.27% Filemake success!!

計算結果は、パラメータに左右されます。

3D 極点図を等高線極点図への切り替え

等高線にレベル表示

最適化以前の Rp%

ValueODFVF-B

最適化後の Rp%

Rp%プロファイルの変化が確認出来ます。

極点図の対称性評価(ODFPoleFifure2(ToolKit)->PoleOrientationToos->PoleAsymmetryValue) S t a n d a r d O D F では、1/4 対称操作が行われるが、極点図の対称性を数値化すると、 対称性は0部分の β 方向の平均値を α 方向にプロットした曲線の、1, 2, 3部分のRp%を計算する。

0部分に対し、3部分は一致するが、1,2部分は一致度が低い 1/4平均では、極点図のずれが発生する。

2. ODF解析ファイル作成

極点データ処理したファイルが表示されているので、目的とするODFを選択します。

StandardODF 向けファイルを作成

入力データホルダに StandardODF ホルダが作成され、StandardODF 入力ファイルが作成

	2016/10/13 4:23	ファイル フォルダー	
StandardODF	2016/10/13 4:34	ファイル フォルダー	
□ 200	2012/07/25 10:15	RINT2000774-	22 KB
□ 220	2012/07/25 10:15	RINT2000774-	22 KB
□ 311	2012/07/25 10:15	RINT2000774-	22 KB
Q 111	2012/07/25 10:15	RINT2000774-	22 KB
111_chB00D1CAS_2	2016/10/13 4:27	テキスト文書	26 KB
200_chB00D1CAS_2	2016/10/13 4:27	テキスト文書	26 KB
220_chB00D1CAS_2	2016/10/13 4:27	テキスト文書	26 KB

3. ODF 解析

作成されたファイルを個々に選択

パラメータを指定して、計算を実行します。

StandardODF は C:¥ODF ホルダがワークホルダで、解析結果が上書きされます。 解析結果はExportして、後から参照出来る様にします。

StandardODFEXportInport ソフトウエアは ODFPoleFigure2(ToolKit)-> StandardODFTools から起動します。

4. ODF解析のError評価

StandardODF のワークホルダ (Export 先) を選択

Rp% (入力極点図と再計算極点図の偏差) を確認 (ΣRp%)

グラフはα軸に対する、Rp%の挙動を表現しています。

 $\pm 1.5\%$ を超えたり、プロファイルの右側付近(defocus 補正量の大きい部分)をチェックします。このデータでは異常ありません。

極点図の確認

入力極点図(上段)、再計算極点図(中段)、残差極点図(下段)の確認が出来ます。

5. {hkl}<uvw>の決定

ODFDisplay を用いて結晶方位密度を計算します。

TextDisplay 1.13M C:\CTR\u00e4work\u00e4ODFDisplay\u00e4OD							
File Help							
Orientation	φ1	Φ	φ2	ODF			
{0 0 1}<1 0 0> cube	0.0	0.0	0.0	5.6			
{1 3 2}<6 -4 3> S	27.03	57.69	18.43	5.38			
{1 1 3}<-3 -3 2> Q2	90.0	25.24	45.0	4.86			
{0 1 1}<1 0 0> Goss	0.0	45.0	0.0	4.26			
{0 1 3}<1 0 0>	0.0	18.43	0.0	3.89			
{0 1 2}<1 0 0> Q1	0.0	26.57	0.0	3.73			
{1 1 2}<-1 -1 1> copper	90.0	35.26	45.0	3.11			
{1 0 1}<-1 -2 1> Brass	35.26	45.0	90.0	2.87			
{0 1 1}<5 -2 2> L	29.5	45.0	0.0	2.78			
{2 1 3}<-1 -4 2> R	46.91	36.7	63.43	2.76			
{1 1 0}<1 -1 1> P	35.26	90.0	45.0	1.85			
{0 1 1}<2 -5 5>	74.21	45.0	0.0	1.06			

S 方位が大きな値になっているので、 β -Fiber が発達しています。 β -F i ber を確認します。

評価は

Cube,Goss は 1/4 で評価、Copper、Brass は 1/2 で評価します。

5.1 {hkl}<uvw>の方位リスト作成

 β -Fiber \mathcal{T} ロファイル

 β -skeleton(± 5 deg) では、Euler角度の ± 5 度以内の最大値でプロットする。結晶方位のずれ対策です。

6. 簡易Rp%を事前に検索する方法(ODFPoleFigure1.5)

ODFPoleFigure2 では Random サンプル無しでも defocus 補正できますが、

Random 試料があれば、ODFPoleFigure 1.5 ソフトウエアで最適化 Rp%の補正が可能になります。

ODFPoleFigure 1.5 で Search Rp%モードで解析を行う。

この試料は、最適化により改善されます。

StandardODF で解析した極点図と逆極点図の等高線表示

StandardODF の描画

Contour Levels: 1.0 2.0 3.0 4.0 5.0 6.0

CTR ソフトウエアでは、

ODF 図上をマウス移動で結晶方位をリアルタイムで表示します。

表示している euler 角度や結晶方位部分のマウスクリックで、結晶方位図を表示します。

Contour Levels: 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Contour Levels: 0.5 1.0 1.5 2.0 2.5 3.0 3.5

CTRソフトウエアで逆極点図表示(InverseTools->GPInverseDisplay ソフトウエア) マウス移動で方位を表示

逆極点図から36Boxの平均方位密度表示

InverseContourDisplay ソフトウエアで表示

InverseDisp2 ソフトウエアで表示

3.294↓ 23 2.921↓ 2.87↓ 4 2.4244 5 2.808↓ 6 7 3.324↓ 2.223↓ 8 3.12↓ 9 4.041↓ 10 4.434↓ 11 2.574↓ 3.54↓ 12 13 4.398↓ 14 4.378↓ 15 3.625↓ 16 3.545↓ 3.81↓ 18 3.875↓ 19 3.411↓ 20 2.463↓ 21 1.409↓ 22 4.951↓ 23 4.062↓ 24 25 2.918↓ $1.847 \downarrow$ 26 1.13↓ 0.689428 0.386↓ 29 6.032↓ 30 4.576↓ 31 2.5↓ 32 0.918↓ 33 0.37↓ 34 0.409↓ 35 0.427↓ 36 0.296↓