極点処理から ODF 解析のチュートリアル

StandardODF 編(規格化は、KearnsMethod)

異方性も材料特性に影響します。異方性の表現方法として、結晶方位{hkl}<uvw>があります。 極点図から結晶方位計算に関して StandardODF を用いて説明します。

ODF 解析から求められる ODF 図(結晶方位図)

結晶方位図から{hkl}<uvw>を求める。

CTR パッケージソフトウエアと StandardODF を使用します。

極点図から{hkl}<uvw>を求める過程は

極点図のデータ処理(バックグランド除去、	RD 補正、	吸収補正、	defocus 補正、	平滑化)
ODF解析ファイル作成				
ODF 解析				
ODF 解析 E r r o r 評価				
{hkl} <uvw>の決定</uvw>				
があります。				

- 例 C:\CTR\DATA\ODFPoleFigurte2のAluminum 極点図を処理する
- 1. 極点図処理

測定データを複数同時選択 defocus ファイル指定
ODFPoleFigure2/3.54YMT[17/03/31] by CTR - □ ×
File Linear(absolute)Contour ToolKit Help InitSet BGMode Measure Condition Free OverlapRevision MinimumMode Rp% Standardize
Files select
ASC(RINT-PC) V III ASC 200 ASC 220 ASC
-Calcration Condition
Previous Next C#CTR#DATA#ODFPoleFigure2#111.ASC
Packgrout delate mode
Peak slit 7.0 mm BG Slit 7.0 mm 🗹 PeakSlit / BGS/lit BG Scope 80.0 deg. 90.0 deg. Set Disp
AbsCalc
Schulz reflection method V Absorption coefficien 133.0 1/cm Thickness 0.2 cm V 2Theta 38.46 deg. O 1/Kt Profile
Defocus file Select
☑ O Defocus(1) functions file
Make defocus function files by TXT2 Files v V Standardize c≆
O Defocus(3) function files folder(Calc unbackdefocus) BB185mm V Limit Alfa Defocus value Free(LimitValue=0.0) V
Defocus(2) function files folder(Calc backdefocus) DSH12mm+Schulz+RSH5mm DSH12mm+Schulz+RSH5mm Profile
Smoothing for ADC Cycles 2 Weight 4 Disp Standardize CenterData OutFiles Cancel Calc Exit&ODF ODF Asc Ras TXT TY ValueS FVF-B ValueODFVF-A

最適化R p %の指定

極点処理を開始

極点処理した極点図が表示されます。

最適化された Rp%が表示されます。

Search Rp% (1,1,1) 3.76% -> 2.64% (2,0,0) 4.28% -> 3.49% (2,2,0) 5.22% -> 4.18% Filemake success!!

Search Rp% (1,1,1) 3.75% -> 3.11% (2,0,0) 4.28% -> 4.22% (2,2,0) 5.22% -> 4.27% Filemake success!!

計算結果は、パラメータに左右されます。

最適化以前の Rp%

ValueODFVF-B

最適化後の Rp%

Rp%プロファイルの変化が確認出来ます。

極点図の対称性評価 (ODFPoleFifure2 (ToolKit) ->PoleOrientationToos->PoleAsymmetryValue) StandardODFでは、1 / 4対称操作が行われるが、極点図の対称性を数値化すると、 対称性は0部分の β 方向の平均値を α 方向にプロットした曲線の、1, 2, 3部分の Rp%を計算する。

0部分に対し、3部分は一致するが、1,2部分は一致度が低い1/4平均では、極点図のずれが発生する。

ODF 解析のためのファイル作成画面を作成

Exit&ODF

ODF

2. ODF解析ファイル作成

極点データ処理したファイルが表示されているので、目的とするODFを選択します。

							-Initiali	ze	
	Outside text(Vector)								Start
	Inside text								
	*Labotex CW	iles)		7 - 0 (cubic	c)	*	•	etHKL<-	Filename
	Stadard ODF	alfa	90.0	beta	90.0 ga	amm 90.0		F AILF IN	ebelect
	Siemens								
	TexTools(txt)	a,b,intens.)))	h,k,l	2Theta	Alfa Area	AlfaS	AlfaE	Select
	*TexTools(pol) CCW			1,1,1	38.46	0.0->75.0	0.0	75.0	✓
	TexTools(pol) CW			2,0,0	44.7	0.0->75.0	0.0	75.0	✓
	*popLA(RAW)CCW			2,2,0	65.08	0.0->75.0	0.0	75.0	✓
	popLA(RAW)CW			2,1,0	0.0		0.0	0.0	
	StandaradODF2.5			2,1,1	0.0		0.0	0.0	
	Bunge(PF)			3,1,1	0.0		0.0	0.0	
	MulTex(TD:beta=0)CCWTXT2			4,0,0	0.0		0.0	0.0	
	Labotex CCW			3,3,1	0.0		0.0	0.0	
	≱			4,2,2	0.0		0.0	0.0	
	≱			5,1,1	0.0		0.0	0.0	
6	≱			5,2,1	0.0		0.0	0.0	
	2			5,3,1	0.0		0.0	0.0	
0	onmont 111 ob P00D 10 0S 0 TVT 20		- AS 1T	VT 110	0001005.07				
0			200_2.1.		00010H0_2.1.	-Labotev(F	PE)popl	A(RAWA	filename
S	Symmetric type Full	CenterData Labotex(EPF)popLA(RAW) filena ietric type Full Image Epf file save Iabotex				mename.			

StandardODF 向けファイルを作成

Comment 111_chB00D1S_2.TXT 200_chB00D1S_2.TXT 220_chB00D1S_2.TXT								
Symmetric type Full	StandardODF text Labotex(EPF),popLA(RAW) filename							

入力データホルダに StandardODF ホルダが作成され、StandardODF 入力ファイルが作成

UTRODF	2016/10/13 4:23	ファイル フォルダー	
]] StandardODF	2016/10/13 4:34	ファイル フォルダー	
un 200	2012/07/25 10:15	RINT200077+-	22 KB
una 220	2012/07/25 10:15	RINT2000774-	22 KB
u <mark>n</mark> 311	2012/07/25 10:15	RINT200077+-	22 KB
un 111	2012/07/25 10:15	RINT200077+-	22 KB
111_chB00D1CAS_2	2016/10/13 4:27	テキスト文書	26 KB
100_chB00D1CAS_2	2016/10/13 4:27	テキスト文書	26 KB
1220_chB00D1CAS_2	2016/10/13 4:27	テキスト文書	26 KB

3. ODF 解析

作成されたファイルを個々に選択

ODF Calculation			
 極点図データ			
面指数 重み	ファイル名(フルバス)		Standard ODF
✓ (100) 1	F:¥CTR¥DATA¥ODFPoleFigure2¥Standa	参照	for Windows XP/Me/2000/98SE/98/ NT4 0/95 Ver 2.4 解析法について
V (110) 1	F:¥CTR¥DATA¥ODFPoleFigure2¥Standa	参照	
V (111) 1	F:¥CTR¥DATA¥ODFPoleFigure2¥Standa	参照	
(210) 1		参照	展開次数 22
□ (211) 1		参照	ゼロ密度領域のしきい値 0.3
(221)		参照	 DL:1世(西)
(310)		参照	表示断面 ・ Phi2断面
(311)		参照	
(321)			┌再計算極点図/
(331)		参照	
(511)		参昭	3 💶 🗸 4 🖵
α max= 75	$\Delta \alpha = 5$ $\Delta \beta = 5$		
β角のタイプ ⁶ C	β =0°, 5°, 10°, ······, 350°, 355° β =2.5°, 7.5°, 12.5°, ·····, 357,5°		1/4極点図 C係数 偶数項 奇数項
			0% 100%
			■ 実行(G) 終了(F)
		ID-ODF	
パラメータを打	皆定して、計算を実行します。)	
STD	計算結果	×	
	完全ODFの最大強度: 6.7 偶数項ODFの最大強度: 6 再計算極点図の最大強度 逆極点図の最大強度: 4.2	1 0.15 1 4.29 9	
	ОК		

StandardODFはC:¥ODFホルダがワークホルダで、解析結果が上書きされます。

解析結果はExportして、後から参照出来る様にします。

StandardODFExportInport 1.02XT[15/10/31] by CTR	
File Help work Export(ODF>Target) Inport(Target>ODF) StandardODF Dir C:\ODF Target C:\CTR\UDFPoleFigure2\U0042UStandardODF execute StandardODF PFDATA delete Comment	StandardODFEXportInport ソフトウエアは ODFPoleFigure2(ToolKit)-> StandardODFToolsから起動します。

4. ODF解析のError評価

ota	nuaruODr V	シークホルタ(Export 九)を送れ	
-		ValueODFVF 2.11MVFT[17/03/31] by CTR -	
File	Help Resolusion:5.0	Mode(1) TextDisplay FolderDisp	
	LaboTex-TPF		
	RIGAKU-ODF		
	TexTools-POL		
	TexTools-RINTTXT		
	Standard ODF		
	popLA(Raw&Other)		
	NEWODF		
	PrintDisplay		
	Exit		
-3.0	0	Alpha(deg.)	90

StandardODF のワークホルダ(Export 先)を選択

Rp%(入力極点図と再計算極点図の偏差)を確認(ΣRp%)

グラフはα軸に対する、Rp%の挙動を表現しています。

±1.5%を超えたり、プロファイルの右側付近(defocus 補正量の大きい部分)をチェックします。 このデータでは異常ありません。 入力極点図(上段)、再計算極点図(中段)、残差極点図(下段)の確認が出来ます。

5. {hkl}<uvw>の決定

ODFDisplay を用いて結晶方位密度を計算します。

<u>/4</u>	TextD	isplay 1.13N	1 C:¥CTR¥wo	ork¥ODFDisplay¥ODF.txt
File Help				
Orientation	φ1	Φ	φ2	ODF
{0 0 1}<1 0 0> cube	0.0	0.0	0.0	5.6
{1 3 2}<6 -4 3> S	27.03	57.69	18.43	5.38
{1 1 3}<-3 -3 2> Q2	90.0	25.24	45.0	4.86
{0 1 1}<1 0 0> Goss	0.0	45.0	0.0	4.26
{0 1 3}<1 0 0>	0.0	18.43	0.0	3.89
{0 1 2}<1 0 0> Q1	0.0	26.57	0.0	3.73
{1 1 2}<-1 -1 1> copper	90.0	35.26	45.0	3.11
{1 0 1}<-1 -2 1> Brass	35.26	45.0	90.0	2.87
{0 1 1}<5 -2 2> L	29.5	45.0	0.0	2.78
{2 1 3}<-1 -4 2> R	46.91	36.7	63.43	2.76
{1 1 0}<1 -1 1> P	35.26	90.0	45.0	1.85
{0 1 1}<2 -5 5>	74.21	45.0	0.0	1.06

S 方位が大きな値になっているので、β-Fiber が発達しています。

 $\beta - F i b e r を確認します。$

評価は

Cube,Goss は 1/4 で評価、Copper、Brass は 1/2 で評価します。

5.1 {hkl}<uvw>の方位リスト作成

β-skeleton(±5deg) では、Euler角度の±5度以内の最大値でプロットする。 結晶方位のずれ対策です。

6. 簡易Rp%を事前に検索する方法(ODFPoleFigure1.5)

ODFPoleFigure2 では Random サンプル無しでも defocus 補正できますが、

Random 試料があれば、ODFPoleFigure1.5 ソフトウエアで最適化 Rp%の補正が可能になります。 ODFPoleFigure1.5 で Search Rp%モードで解析を行う。

24	ODFPolefigure1.5 1.31MT[17/03/31] by CTR –
File Linear(C	contour) ToolKit Help InitSet Rp%
Files select ASC(RINT-PC)	111-OSCASC 200-OSCASC 220-OSCASC
-Calcration Conc Previous	dition Next C:#CTR#DATA#ODFPoleFigure#111-OSCASC hkl 1,1,1 Change Cycles 2 v Weight 9 Disp
	ObubleMode OsingleMode OLowMode OHighMode ONothing Set Disp
AbsCalc Schulz	reflection method v Absorption coefficien 1.0 1/cm Thickness 1.0 cm 2Theta 38.42 deg.
Defocus file Se	elect TXT2 C#CTR#DATA#Al-powder-random#defocus#DEFOCUS_F.TXT TextDisp 0 1/Ra Profile Limit Alfa Defocus val. Free v
Standardize -	CenterData OutFiles Average Asc Ras TXT2 TXT Search minimum Rox(Cubic on L) ValueODF ValueODF-A Cancel Calc
- Detocus tile ≿e	lect
✓ 200	TXT2 C*CTR*DATA*AI-powder-random#defocus*DEFOCUS_F.TXT TextDisp 1/Ra Profile Limit Alfa Defocus val Free

	2	TXT2	C:¥CTR¥DA	TA¥Al-powde	er-random¥d	efocus¥DEF	DOUS_F.TXT	TextDisp	I/Ra Pro	ofile Limit Alfa	a Defocus va	Free v
Standa	ardize –	CenterData -	OutFiles -					[
v c	TR	✓ Average	O Asc	🔘 Ras	TXT2	⊖ TXT	Search minimum Rp%(Cubic onI	ValueODF	ValuODF-A	Cancel	Calc	ODF File

Search Rp% (1,1,1) 5.8% -> 1.71% (2,0,0) 4.15% -> 3.44% (2,2,0) 4.68% -> 3.1% Filemake success!!

この試料は、最適化により改善されます。

StandardODF で解析した極点図と逆極点図の等高線表示

StandardODF の描画

Contour Levels: 1.0 2.0 3.0 4.0 5.0 6.0

表示している euler 角度や結晶方位部分のマウスクリックで、結晶方位図を表示します。

Contour Levels: 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Contour Levels: 0.5 1.0 1.5 2.0 2.5 3.0 3.5

CTRソフトウエアで逆極点図表示 (InverseTools->GPInverseDisplay ソフトウエア) マウス移動で方位を表示

逆極点図から36Boxの平均方位密度表示

InverseContourDisplay ソフトウエアで表示

3.2941 1 2 3 2.921↓ 2.87↓ 4 2.424 5 2.808↓ 6 7 3.324↓ 2.2234 8 3.124 9 4.041 10 4.434↓ 11 2.574↓ 3.541 12 13 4.398↓ 14 4.378↓ 15 3.625↓ 16 3.545 3.811 17 18 3.875↓ 19 3.411↓ 20 2.463↓ 21 1.409↓ 22 4.951↓ 23 4.062↓ 24 25 2.918↓ 1.847↓ 26 1.13↓ 27 0.689↓ 28 0.386↓ 29 6.032↓ 30 4.576↓ 31 2.5↓ 32 0.918↓ 33 0.37↓ 34 0.409↓ 35 0.427↓

36 0.296↓