defocusプロファイルを計算で求めるTenckhoffの計算式 TenckhoffCalcプログラム

Version 1.13M

Version1.12以降、Schulzの反射法以外の defocus 曲線修正に対応しています。

2019年11月25日

TenckhoffはSchulz反射光学系のdefocusプロファイルが計算で求められるとし 以下の計算式を文献にまとめている。2 θ 角度、受光スリット、X線の照射高さで決まるとされている。

$$\frac{I_{A(\Phi,\Theta,W_B,L_R)}}{I_{A(\Phi=0,\Theta,W_B,L_R)}} = 1$$

$$-\frac{2}{(2\pi)^{1/2}} \int_{-\infty}^{-L_R/P(W_B \tan \Phi \sin 2\Theta/\sin \Theta)} \exp(-y^2/2) dy.$$

JOURNAL OF APPLIED PHYSICS

VOLUME 41, NUMBER 10

SEPTEMBER 1970

Defocusing for the Schulz Technique of Determining Preferred Orientation*

E. TENCKHOFF

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (Received 16 January 1970; in final form 3 April 1970)

上記Wbが測定2θの依存がなければ、比例定数Pは一定であるとしている。

しかし、Schulzスリットが常に試料から等距離であれば成り立つのかもしれないが

実際に測定計算してみると、比例定数が測定2θと相関があることが分かる。

本ソフトウエアでは測定したrandom試料極点図から比例定数を求め、

2 θの相関をTABLE化する事を目的としている。

しかしながら、受光スリットが狭すぎると、理論計算値は極点図の中心側で大きく外れる。

Tenckhoff比例係数ファイル群や多項式ファイル群は ODFPoleFigure2 の defocus 補正ファイルとして 使います。

応用として、random試料、測定光学系の良否評価としても使用できます

📓 TenckhoffCalc 1.13 by CTR PDuser ctr helpertex – 🗖 🗙
File Help
MODE startAve Arithmetic mean 3 InputAveRead
TXT2File
TenckhoffParametor
beam width on sample(mm) 1.0 P 1.03
2Theta angle(degree) 90 h,k,l 0,0,0 RSSlitSize(mm) 7
Alfa(degree) Start 0 Stop 75 Step 5
Makeh Ile Makeh Ile Fitting Calc MaxIntensity 1 O TenckhoffFile TXT2 ASC Polynomial
Variance v
Maxsreach 🗸

Maxsreach v startAve Maxsreach InputAve

> MODEは、startAVE, Maxsreach, InputAve があり、defocus 曲線の規格化の値を決める。 startAve では極点図の中心付近の平均値を規格値とする。

Maxsreach では最大値を規格値とする。

InputAve は入力データをい編集し、多項式に近似する

r a n d o m試料の極点図を測定し、ODFPoleFigure2 ソフトウエアでバックグランド除去処理を 行った TXT2 データ指定。

TenckhoffParametor					
beam width on sample(mm)	1.0	Р	1.03		
2Theta angle(degree)	90	h,k,l	0,0,0	RSSlitSize(mm)	7
Alfa(degree) Start	0	Stop	75	Step 5	

Tenckhoffのプロファイルパラメータ

	MakeFile			
Fitting Calc	Maxintensity 1	C TenckhoffFile	⊙ TXT2	C ASC C Polynomial

CalcはTenckhoffのプロファイルパラメータから defocus 曲線を計算

FittingはTXT2データから比例係数を算出する。

算出の際、beamwidth、2Thetaangle、RSslitSize は手入力してください。

MakeFile で各種ファイルが作成される。

Normalization:通常(MaxIntensity1.0)、

Normalize では規格化強度が表示され、作成されるデータは規格化強度が指定された値になります。

2

ファイル指定で極点図とαプロファイルが表示され

ファイル名から指数、αのstart, stop, stepが表示される。

beam width on sample(mm)	1.0 P	1.03		
2Theta angle(degree)	90 h,k,l	1,1,1	RSSIitSize(mm)	7
Alfa(degree) Start (0.0 Stop	75.0	Step 5.0	

2Theta角度とスリットの幅を変更する。

Fitting

で、パラメータから比例係数を計算し、defocus 曲線を描画

V:全データの分散、VSはスタートα角度(或いは指定α角度)の分散

random資料を変更し、規格化値を合わせる

最大値と規格化値を表示

グラフは最大値が1として表示されています。

MaxIntensity で Normalize 値を1にすると最大強度が1に近い値 Normalize では、指定された値が Normalize 値の極点図が作成される。 Schulzの反射法以外の場合

例えば、受光側の平行性が高い場合やrandom試料の粒径が大きい場合

1	_12.34 - □ ×	1.03ST[19/09/30] by CTR – 🗆 ×
	all the	ocusMakeTABLE *F.TXT Files
		ddDefocusFile Fitting function file
		MultiDisp Ver.1.107S – U 🗡
		Defocus profile
	MODE startAve	re 1.0 ee 0.9 0.8 0.7 0.6 0.5 0.6 0.5 0.4 0.4
GP(TenckhoffParametor beam width on sample(mm) 2Theta angle(degree)	0.2 0.1 0.0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 0 Alfa
Lai	Alfa(degree) Start (.0 defocus
	Fitting Calc	Noralization
	Variance 15.0 V	

粒径が荒く、defocus曲線が凸凹している。

通常のTenckhoffnifittingすると

上手くFitting出来ません。

defocusデータの修正と多項式近似が適当と考えられます。

d e f o c u s データの修正と多項式近似の採用 (ModeをInputAveを選択)

```
MODE
```

InputAve

V

でデータ選択でデータ修正画面を表示

<u>#</u>	12.34	_ □	×	TenckhoffC	alc 1.12MT[19/09/30] by (CTR
				26		TextDispla	iy 1.13
				File Help			
Ι.				15.0	53.569	53.569	
	Seal Sector			20.0	55.616	55.616	
	- 14 C		DI DI	25.0	68.817	68.817	
	-			30.0	63.153	63.153	
	1 m	A		35.0	83.413	83.413	
	1. 1. 1. 1. 1.			40.0	53.027	53.027	
	, M			45.0	79.991	79.991	
				50.0	81.383	81.383	
				55.0	79.498	79.498	
	_	60.0	92.954	92.954			
	Alfa(degree) Start		0	65.0	85.423	85.423	
				70.0	90.016	90.016	
Ľ.		makerine	- Nor	75.0	102.276	102.276	
	Fitting Calc		M	80.0	111.219	111.219	
			85.0	118.285	118.285		
				90.0	73 898	(73 898)	

凸凹を修正

15.0	53.569	53.569	15.0	53.569	53.569
20.0	55.616	55.616	20.0	55.616	55.616
25.0	68.817	68.817	25.0	68.817	68.817
30.0	63.153	63.153	30.0	63.153	75
35.0	83.413	83.413	35.0	83.413	83.413
40.0	53.027	53.027	40.0	53.027	80
45.0	79.991	79.991	45.0	79.991	79.991
50.0	81.383	81.383	50.0	81.383	81.383
55.0	79.498	79.498	55.0	79.498	79.498
60.0	92.954	92.954	60.0	92.954	92.954
65.0	85.423	85.423	65.0	85.423	85.423
70.0	90.016	90.016	70.0	90.016	90.016
75.0	102.276	102.276	75.0	102.276	102.276
80.0	111.219	111.219	80.0	111.219	111.219
85.0	118.285	118.285	85.0	118.285	118.285
90.0	73.898	73.898	90.0	73.898	120

5

¥

修正後、同一ファイル名に上書き

<u>#</u>		
File	Help	
	Load	53.569
	LUau	55.616
	Save	68.817
		63.153
	Exit	83.413
40 0		53 027

保存後、移動平均点数を指定し、読み込む

Arithmetic mean

InputAveRead

読み込まれた修正後のdefocus曲線

で多項式に Fitting

Noralization MaxIntensity V 1	◯ TenckhoffFile ● TXT2 ○ ASC ○ Polynomial
ODFPoleFigure2 で defocus ファイルとして 登録時、Normalization <u>を</u> 行う。	登録するのであれば、TXT2 を選択しファイル作成
Defocus file Select Trasmission defocus HKL+T	
O Defocus(1) functions file Make defocus function files by TXT2	Files 🗸 🗹 Normalization 🗲
修正前データ	

修正後 GPPoleDisplay で表示

最大密度の違いは、修正前は粒径が粗いデータのため